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Abstract: Nitrogen (N) fertilization for cereal crop production does not follow any

kind of generalized methodology that guarantees maximum nitrogen use efficiency

(NUE). The objective of this work was to amalgamate some of the current concepts

for N management in cereal production into an applied algorithm. This work at

Oklahoma State University from 1992 to present has focused primarily on the use of

optical sensors in red and near infrared bands for predicting yield, and using that infor-

mation in an algorithm to estimate fertilizer requirements. The current algorithm,

“WheatN.1.0,” may be separated into several discreet components: 1) mid-season pre-

diction of grain yield, determined by dividing the normalized difference vegetative

index (NDVI) by the number of days from planting to sensing (estimate of biomass

produced per day on the specific date when sensor readings are collected); 2) estimating

temporally dependent responsiveness to applied N by placing non-N-limiting strips in

production fields each year, and comparing these to the farmer practice (response

index); and 3) determining the spatial variability within each 0.4 m2 area using the

coefficient of variation (CV) from NDVI readings. These components are then inte-

grated into a functional algorithm to estimate application rate whereby N removal is

estimated based on the predicted yield potential for each 0.4 m2 area and adjusted

for the seasonally dependent responsiveness to applied N. This work shows that

yield potential prediction equations for winter wheat can be reliably established

with only 2 years of field data. Furthermore, basing mid-season N fertilizer rates
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on predicted yield potential and a response index can increase NUE by over 15% in

winter wheat when compared to conventional methods. Using our optical sensor-

based algorithm that employs yield prediction and N responsiveness by location

(0.4 m2 resolution) can increase yields and decrease environmental contamination

due to excessive N fertilization.

Keywords: Nitrogen rate calculator, corn, wheat, topdress nitrogen, yield based

nitrogen fertilization

INTRODUCTION

From the early 1950s to the early 1970s, increased food production was a

priority in agricultural areas around the world (Johnston 2000). During this

time period, the largest increase in the use of agricultural inputs was for

nitrogen (N) fertilizer, because it had the largest impact on yield. Since

the early 1960s, the increase in fertilizer N consumption has continued,

becoming somewhat stable over the past 10 years. Although fertilizer N

consumption and cereal grain production have both increased over the last

5 decades, contamination of surface and groundwater supplies continues

because the efficiency at which fertilizer N is used in grain production

has remained at a stagnant 33% worldwide (Raun and Johnson, 1999). While

only 33% of the nitrogen applied in fertilizer is recovered in the cereal grain

harvest, few published reports have documented practices, which significantly

improve the efficiency at which N is used in cereal production.

Voss (1998) noted that the greatest recent improvement in fertilizer

recommendations in many states was the calibration of a soil nitrate test on

which to base fertilizer N recommendations for corn (Zea mays L.).

Makowski and Wallach (2001) showed that models including end-of-winter

mineral soil N gave more profitable N fertilizer recommendations, but that

10 site-years of data were required for model parameter estimation. It should

be noted that widespread adoption of soil testing remains limited in both the

developed and developing world. In Oklahoma, annual soil testing takes

place on less than 10% of the agricultural land, and this number is

significantly less in the developing world (Hailin Zhang, Head of OSU Soil

Testing Lab, personal communication, August 2003).

Various researchers have worked to predict N mineralized from soil

organic matter, which could lead to improved N fertilizer recommendations

(Cabrera and Kissel, 1988). Recent work by Mulvaney et al. (2001) found

that the concentration of amino sugar N was highly correlated with check-

plot yields and fertilizer N response. Amino sugar N was determined on

5-g soil samples treated with 20 mL of 6 M HCl heated under reflux

(110–1208C) for 12 h. The hydrolysis mixture was then filtered and stored

at 58C. Neutralized (use of 1 M NaOH until a pH of 6.5 to 6.8 was

achieved) hydrolysates were analyzed for hydrolysable N, NH4–N, and
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amino sugar N using the diffusion methods described by Mulvaney and Khan

(2001). This methodology successfully partitioned N-responsive from non-N-

responsive corn for sites that received “normal rainfall.” It is not clear how this

technique could be implemented for within-season N fertilizer recommen-

dations, because N availability is strongly influenced by temporal changes.

Current strategies for winter wheat in Oklahoma recommend that farmers

apply 33 kg N ha21 for every 1 Mg of anticipated wheat yield (2 lb N ac21 for

every bushel of expected wheat grain yield) they hope to produce, subtracting

the amount of NO3–N in the surface (0–15 cm) soil profile (Johnson et al.,

2000). When grain yield goals are applied using this strategy, the risk of

predicting the environment (good or bad year) is placed on the producer,

especially when farmers take the risk of applying all N preplant. Schmitt

et al. (1998) reported similar recommendations of 20 kg N ha21 for every

1 Mg of corn (1.2 lb N ac21 for every bushel of corn) minus soil test

NO3–N and/or any credits from previous leguminous crops in the rotation.

To some extent, university extension (e.g., soil testing), fertilizer dealers,

and private consulting organizations have historically used grain yield

goals, due to the lack of a better alternative, and because producers have

been able to relate to an input/output strategy for computing N requirements.

Many researchers have used measurements of NO3–N in plant tissue to

identify N sufficiency or deficiency at early growth stages in winter wheat

(Vaughan et al., 1990a). However, the utility of this approach was limited

since critical tissue NO3–N levels varied as a function of temporal variability

(Raun and Westerman, 1991). Even so, petiole NO3–N has been successfully

used in potatoes, where monitoring NO3–N late in the season provided a

mechanism for improving quality in a region where irrigation was used and

temporal variability was limited (Zhang et al., 1996).

Vaughan et al. (1990b) applied a combination of improved spring fertili-

zer recommendations in winter wheat by using both total N in wheat plant

tissue and soil NH4–N to improve spring N fertilizer recommendations in

winter wheat and was able to prevent over fertilization. Work in Pennsylvania

by Fox et al. (2001) found that stalk NO3–N test taken 2 weeks after corn had

reached physiological maturity was an excellent indicator of corn N status.

A critical level of 250 mg kg21 separated N-sufficient from N-deficient

sites. This same work showed that chlorophyll meter readings at one-fourth

milk line growth stage could be used as a good indicator of corn N status,

but was less reliable if drought-stressed sites were included. In Nebraska,

Varvel et al. (1997) found that chlorophyll meter readings and end-

of-season stalk NO3-N concentrations (threshold of 2000 mg kg21) provided

additional criteria to help partition and separate fields into areas with poten-

tially different levels of residual soil N. They proposed that this information

could be used to guide soil sampling and to develop or improve site-specific

N fertilizer recommendations, which should decrease environmental risk by

reducing the amount of NO3-N available for leaching. Further inspection

of the Nebraska data showed that any time stalk nitrate levels were in the
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250 mg kg21 region [retro evaluation versus the Fox et al. (2001) data],

grain yields were less than maximum (Gary Varvel, personal communication,

July 2003).

Wood et al. (1992) found that tissue N concentration at V10 and mid-silk

were good predictors of corn grain yield, noting that field chlorophyll

measurements using a SPAD-502 chlorophyll meter (Minolta Camera Co.,

Ltd., Japan) were highly correlated with tissue N concentrations at both of

these growth stages. Sensor work by Blackmer et al. (1994) indicated that

the measurement of light reflectance near 550 nm had promise as a technique

to detect N deficiencies in corn leaves. Varvel et al. (1997) employed chloro-

phyll meter readings to calculate a sufficiency index (as-needed treatment/
well-fertilized treatment) whereby in-season N fertilizer applications were

made when index values were below 95%. If sufficiency index values were

below 90% at the V8 growth stage in corn, maximum yields could not be

achieved with in-season N fertilizer applications. This suggested that pre-

V8 N management was critical for corn.

Fiez et al. (1995) reported on the need to reduce N losses and lower N

rates in winter wheat production, especially on north-facing back-slopes.

Lengnick (1997) suggested that plant indicators followed changes in

landscape features that influenced biomass production and N uptake. He

speculated that these changes would not be revealed by soil test analyses.

Voss (1998) suggested that a regional research approach using current and

potential precision agriculture technology could provide a large and up-to-

date database on which to base nutrient recommendations across a wide

spectrum of soils and crops. This work further noted the importance of simul-

taneously using soil and plant productivity indicators to make site-specific

crop production decisions. The resolution at which these existed was not

addressed.

Raun et al. (2001) showed that yield potential could be estimated from

mid-season sensor reflectance measurements (Feekes 4 to 6) in winter

wheat. Their work employed the normalized difference vegetative index

(NDVI) computed from red and near infrared reflectance values [NDVI ¼

(NIR-Red)/(NIRþ Red)]. NIR and Red are the reflectance measurements in

the near infrared and red bands, respectively. This work predicted yield

using the sum of two post dormancy sensor readings (NDVI) divided by the

cumulative growing degree-days or GDD [(Tminþ Tmax)/2–4.48C] from

the first to the second readings. Tmin and Tmax are the minimum and

maximum temperatures in a 24-h period. Their index, in-season estimated

yield, or INSEY was later modified whereby a single NDVI measurement

was divided by the number of days from planting to sensing, counting only

those days where GDD . 0 (Raun et al., 2002). This method eliminated

those days where growth was not possible as a function of temperature,

regardless of the soil moisture conditions. Raun et al. (2002) showed that N

fertilization based on mid-season estimates of yield potential increased

NUE by more than 15% when compared to traditional practices which
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applied N at uniform rates. A significant key to the success of this work was

collecting sensor readings from each 1 m2 area and fertilizing each 1 m2,

recognizing that the differences in yield potential and subsequent fertilizer

need exists at this spatial scale. This spatial scale was determined in earlier

work, where extensive soil sampling, optical sensor measurements of plants,

and geostatistical analyses, showed that significant differences in N availabil-

ity existed at a 1 m2 spatial resolution and that each square meter needed to be

treated independently to maximize benefits (Raun et al., 1998; Solie et al.,

1999). Earlier work by Solie et al. (1996) noted that the fundamental field

element for sensing and treating fertility differences is that area which

provides the most precise measure of the available nutrient where the level

of that nutrient changes with distance.

Taylor et al. (1999) evaluated the relationship between the coefficient

of variation (CV) from grain yields and plot size. This work showed that

CV’s decreased with corresponding decreases in plot sizes. This research

suggested that the small plot sizes were consistent with the resolution where

detectable differences in soil test parameters existed and should be treated

independently. Research conducted at the International Maize and Wheat

Improvement Center (CIMMYT) suggested that the use of within row CV’s

in corn could be used to detect the physiological growth stage when

expressed spatial variability was the greatest from readings collected on a

daily basis throughout the growth cycle (Raun et al., 2005).

Over an 11-year period, the authors have developed a process to

determine N fertilizer application rate from optically sensed reflectance

measurements that vary temporally and spatially. The objective of this

paper is to describe and justify that process.

MID-SEASON NITROGEN FERTILIZATION ALGORITHM

Rationale for Basing Algorithm on Predicted Yield

In the last century, yield goals have provided one of the more reliable methods

for determining pre-plant fertilizer N rates in cereal production. The logic of

this approach makes sense, since at any given level of yield for a specific crop,

nutrient removal can be estimated based on known concentrations in each

respective grain. For example, total N concentrations in wheat, corn, and

rice grain average 2.13, 1.26, and 1.23 %N, respectively (Tkachuk, 1977).

Although there are expected differences in varieties/hybrids and growing con-

ditions, these can be accurately estimated for selected production regions and

cultivars. Once expected removal amounts are known (based on a projected

yield), mid-season application rates are determined by dividing removal by

the projected use efficiency. Similarly, known quantities of phosphorus (P),

potassium (K), sulfur (S), and other micronutrients within particular

cereal grain crops have been published by the Potash Phosphate Institute
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(Norcross, GA) (Potash Phosphate Institute, 2000), and based on these con-

centrations, mid-season nutrient rates could be determined at specific foliar

nutrient application efficiencies.

Johnson (1991) suggested that it is usually advantageous to set the grain

yield goal above that of average yields in order to take advantage of above-

average growing conditions when they are encountered in dryland agriculture.

Dahnke et al. (1988) reported that yield goal was the “yield per acre you hope

to grow,” clearly delineating the risk farmers take when applying preplant N.

Work by Rehm and Schmitt (1989) suggested that with favorable soil moisture

at planting it would be smart to aim for a 10 to 20% increase over the recent

average when selecting a grain yield goal. They also indicated that if soil

moisture was limiting, yield goals based on past averages were not

advisable for the upcoming crop. This is an important observation, since the

strategy proposed in this paper could theoretically adjust mid-season

projected yield goal or yield potential based on soil profile moisture at

planting, or better yet, profile moisture at the time of sensing. This is consist-

ent with observations by Black and Bauer (1988) who noted that grain yield

goal should be based on how much water was available to the winter wheat

crop from stored soil water to a depth of 1.5 m in the spring plus the antici-

pated amount of growing season precipitation.

Oklahoma State University Procedure and Algorithm for

Calculating Spatial and Temporal Varying N Fertilizer Rates

The Oklahoma State University optical sensor based algorithm calculates N

fertilizer rates, and it depends on making an in-season estimate of the

potential or predicted yield, determining the likely yield response to additional

nitrogen fertilizer, and finally calculating N required to obtain that additional

yield. In addition, a procedure has been developed to modify the calculated

fertilizer response to account for the effect of spatial variation as it affects

the crop’s ability to respond to additional fertilizer. The approach of this

study was based on the ability to predict yield potential and to calculate N

required based on the total amount of a given nutrient that will be removed

in each crop.

Estimate of Yield Potential

Work by Stone et al. (1996) showed that early-season NDVI readings of

winter wheat measured with an optical sensor were highly correlated with

total above ground plant biomass. The effect of the number of days of

active plant growth prior to sensing was minimized by dividing NDVI

readings by the number of days from planting to sensing where GDD . 0.

Including only those days where GDD was more than 0 was necessary in

order to remove days where growth was not possible in winter wheat, and
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which were notably variable over sites and years. In essence, the index,

INSEY, was an estimate of biomass produced per day when growth was

possible. Raun et al. (2002) showed that optical sensor readings could be

collected once, anytime between Feekes growth stages 4 and 6, and that

INSEY was an excellent predictor of yield (grain or forage depending on

the system). This work was recently updated to include 30 locations over a

6-year period from 1998 to 2003 (Fig. 1).

What is striking from this research is that planting dates ranged from

September 24 to December 1 (difference of 68 days), and sensing dates

ranged from February 10 to April 23 (difference of 72 days), (range of differ-

ences from planting to sensing of 133 to 184 days) yet yield prediction

remained quite good (solid line). The results clearly indicated that, for

winter wheat, biomass produced per day was an excellent predictor of grain

yield. Furthermore, over this 6-year period, five different varieties

(Tonkawa, 2163, Custer, 2137, and Jagger) were included in this database

(Table 1). In this regard, it was noteworthy to find such a good relationship

with final grain yield, because so many uncontrolled variables from planting

to sensing (rainfall, planting date, temperature, etc.) had the potential to

adversely affect this relationship. The good correlation was somewhat

surprising when considering the many post-sensing stresses that could be

encountered, and would decrease yields (rust, drought, weed infestations,

etc.). These unpredictable by-site problems would undoubtedly decrease

Figure 1. Relationship between observed wheat grain yield and the In Season

Estimated Yield (INSEY) determined by dividing NDVI by the number of days from

planting to sensing (days where growth was possible, or GDD . 0) at 30 locations

from 1998 to 2003.
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correlation, since all experimental sites were included in the database. Further-

more, considering the many post-sensing conditions that could impact the

relationship between INSEY and final grain yield, the relatively good fit of

the exponential curve in Fig. 1 (solid line) strongly supports the argument

that yield potential can indeed be predicted. However, that potential may not

be realized because post-sensing conditions could adversely impact final

grain yield.

Because of the importance of yield potential for determining N appli-

cation rates, we must expand the concept. The yield potential for any given

0.4 m2 area is the grain yield achievable, considering total plant growth

from planting, accounting for plant stand and/or damage on the date of

Table 1. Summary of planting, sensing, and harvest dates over 30 locations and 6

years

Experiment Crop cycle Planting date Sensing date Harvest date Variety

Perkins N�P 1997–98 Oct-21-97 Apr-02-98 Jun-16-98 Tonkawa

Perkins S�N 1997–98 Oct-21-97 Apr-02-98 Jun-16-98 Tonkawa

Tipton S�N 1997–98 Oct-10-97 Mar-01-98 Jun-03-98 Tonkawa

Perkins N�P 1998–99 Oct-12-98 Mar-04-99 Jun-09-99 Tonkawa

Stillwater 222 1998–99 Oct-13-98 Feb-24-99 Jun-15-99 Tonkawa

Efaw 301 1998–99 Oct-15-98 Mar-24-99 Jun-15-99 Tonkawa

Efaw AA 1998–99 Nov-9-98 Mar-24-99 Jun-15-99 Tonkawa

Haskell 801 1998–99 Oct-16-98 Mar-23-99 Jun-07-99 2163

Lahoma 502 1998–99 Oct-09-98 Mar-05-99 Jun-30-99 Tonkawa

Perkins N�P 1999–00 Oct-08-99 Feb-08-00 May-30-00 Custer

Stillwater 222 1999–00 Oct-07-99 Feb-10-00 Jul-06-00 Custer

Efaw 301 1999–00 Oct-07-99 Feb-10-00 Jun-02-00 Custer

Efaw AA 1999–00 Oct-07-99 Feb-15-00 Jul-07-00 Custer

Haskell 801 1999–00 Oct-08-99 Mar-14-00 Jun-02-00 2137

Lahoma 502 1999–00 Oct-12-99 Feb-15-00 Jun-13-00 Custer

Hennessey AA 1999–00 Oct-07-99 Feb-15-00 Jun-07-00 Custer

Perkins N�P 2000–01 Nov-17-00 Apr-13-01 Jun-07-01 Custer

Stillwater 222 2000–01 Nov-20-00 Apr-13-01 Jun-12-01 Custer

Efaw 301 2000–01 Nov-16-00 Apr-13-01 Jun-11-01 Custer

Efaw AA 2000–01 Nov-22-00 Apr-23-01 Jun-11-01 Custer

Haskell 801 2000–01 Oct-10-00 Apr-12-01 Jun-06-01 2137

Lahoma 502 2000–01 Dec-01-00 Apr-13-01 Jun-15-01 Custer

Perkins N�P 2001–02 Oct-16-01 Feb-27-02 Jun-11-02 Custer

Stillwater 222 2001–02 Oct-01-01 Feb-27-02 Jun-03-02 Custer

Efaw AA 2001–02 Oct-04-01 Feb-27-02 Jun-28-02 Custer

Haskell 801 2001–02 Oct-19-01 Mar-13-02 Jun-19-02 2137

Hennessey AA 2001–02 Oct-30-01 Mar-26-02 Jun-12-02 Custer

Stillwater 222 2002–03 Oct-14-02 Mar-12-03 Jun-23-03 Custer

Efaw AA 2002–03 Oct-05-03 Mar-10-03 Jun-23-03 Custer

Lahoma 502 2002–03 Sept-24-03 Feb-18-03 Jun-17-03 Custer
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sensing. The same spot will likely have the same yield potential whether or not

it was sensed on March 1, or March 10 for a given year, since days from

planting acts as the normalized divisor. The relationship between yield data

and sensor data can be described by an exponential curve. However,

standard regression techniques produce a prediction model that includes

data from fields whose yields were adversely affected by events subsequent

to the date of sensing that could not be predicted. Consequently, a model of

actual grain yield will under predict or over predict potential grain yield at

the sensing date. To correctly predict the potential yield, the model should

be fitted to yields unaffected by adverse conditions from sensing to

maturity. Since actual yields include some that were reduced by poor

growing conditions after sensing, and some that were not, it is important to

use the actual yields unaffected by post sensing factors when predicting

potential yield.

There is currently no established empirical method to determine how

much the curve should be shifted. We have elected to adjust the constant

‘a’ within the exponential model (y ¼ aebx) such that the number of

observations above the curve was 32% of the total data points (Fig. 1). This

curve more realistically represents the yield potential achievable in rainfed

winter wheat considering that post-sensing stresses (moisture, disease, etc.)

from February to July could lower “observed yields.” Thus, yield potential

or YP0þ 1 standard deviation is currently used in our algorithm for predicting

yield potential. The model currently used to predict wheat grain yield is:

YP ¼ 0:359 e324:4 INSEY ð1Þ

It is of further importance to note that differences from yield prediction

equations formulated using the first 2 years (1998–1999, 8 locations),

second 2 years (2000–2001, 12 locations), and third 2 years (2002–2003,

10 locations) of field data, did not differ substantially when compared to

each other (Fig. 2). This suggests that it is possible to establish reliable

yield potential prediction from only 2 years of field data, provided that

enough sites were evaluated within this time period. Regression significance

(R2) differed among the three, 2-year data sets, which was expected,

but with very small differences between regression coefficients. For all

the three, 2-year data sets, outer limits (left edge of the points from each

2-year data set moving from left to right) did not change substantially,

and the equations were quite similar to that found for the 6-year model

(Figs. 1 and 2).

Estimating the Responsiveness to Applied Nitrogen

Identifying a specific yield potential does not translate directly to an N recom-

mendation. Determining the extent to which the crop will respond to

additional N is equally important. The concept of the response index (RI)
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was expanded from initial work by Johnson and Raun (2003) to predict crop

response to additional N fertilizer using in-season sensor measurements

(Mullen et al., 2003). The Response Index is defined as

RIHarvest ¼
YldNRich

YldFieldRate

ð2Þ

where:

RIHarvest is the fertilizer Response Index for a harvested crop.

YldNRich is the grain yield from an area treated within sufficient N fertilizer to

ensure that N is non-limiting.

YldFieldRate is the grain yield from an adjacent area treated at the normal field N

application rate.

RI varied from field to field and over years and likely varied spatially

within a field. To determine RI, N fertilizer was applied to a strip extending

across a field at a rate sufficient to assure that N was not limiting, but not

excessive (Nitrogen Rich Strip). Midseason estimates of RIHarvest were

made by optically scanning the growing crop and calculating the NDVI

Figure 2. Relationship between observed wheat grain yield and the in-season-

estimated yield (INSEY) determined by dividing NDVI by the number of days

from planting to sensing (days where growth was possible, or GDD . 0) using 8

locations from 1998 to 1999, 12 locations from 2000 to 2001, and 10 locations from

2002–2003.
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response index, RINDVI:

RINDVI ¼
NDVINRich

NDVIFieldRate

ð3Þ

where:

NDVINRich is NDVI of an area within the NRich strip.

NDVIFieldRate is NDVI of an adjacent area treated at the normal N rate.

This fertilizer index was developed following comprehensive work by

Johnson and Raun (2003) demonstrating that the response to applied N in

the same field is entirely variable from one year to the next and independent

of whether or not previous year yields were high or low. They studied grain

yield response to applied N in a long-term replicated experiment where the

same rates were applied to the same plots each year for over 30 years. The

response to applied N changed drastically from one year to the next, with

the check plot yield (no N applied over this 30þ year period) showing no

consistent trend to decline (Fig. 3). This was attributed to N mineralization

and variable N contributions from the atmosphere and rainfall that were unpre-

dictable over time and dependent on highly variable weather conditions

(Johnson and Raun, 2003).

Because the response to N fertilizer is dependent on the supply of non-

fertilizer N (mineralized from soil organic matter, deposited in the rainfall,

etc.) in any given year, N management strategies that include a reliable

mid-season predictor of RI should dramatically improve NUE in cereal

Figure 3. Average winter wheat grain yield from 1971 to 2003 from treatments

receiving 112 kg N ha21 annually and no fertilizer N (0 kg N ha21), long-term exper-

iment #502, Lahoma, OK. P and K applied each year to both treatments at rates of

20 and 56 kg ha21, respectively.
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production (Johnson and Raun, 2003). This paper noted that the RI values

changed considerably when collected from the same plots that had been

managed the same way for 30 years. This was attributed to the striking differ-

ences in rainfall and temperature from one year to the next and associated

crop need (temporal variability), which influenced how much non-fertilizer

N was used by the crop.

The relationship between RI computed from NDVI readings collected

from the check plots and adequately N fertilized plots at Feekes growth

stages 4 to 6 (RINDVI) with RI computed from harvested grain (grain yield

ratio determined from the same respective plots, RIHarvest) over 63 locations

from 1998 to 2003 is reported in Fig. 4. RINDVI was positively correlated

with RIHarvest over this 6-year period. However, RINDVI could greatly underes-

timate the benefits of additional N fertilizer particularly in the middle range.

The improved fit of a linear-linear curve in this middle region indicated that

RINDVI measurements in midseason could not fully account for intervening

causes improving final yield. Despite this limitation, RINDVI has proven to be

a good, conservative predictor of wheat grain yield with additional fertilizer.

Where RINDVI is used to predict the average grain yield response to

additional fertilizer, average NDVI of the NRich strip should be compared

with average NDVI of a field rate strip immediately adjacent to the NRich

strip. Where RINDVI is used to predict spatially varying response within a

field, NDVI measurements should be made in an area where observation

indicates that response to fertilizer is high.

The highest NDVI measurement along the NRich strip can be used to

calculate Eq. (1) the maximum potential yield. YPmax is the maximum yield

Figure 4. Relationship between RINDVI and RIHarvest from 63 winter wheat exper-

iments, 1998 to 2003, central and western OK.
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that could be expected within the most productive area in a field when N was

not limiting for the year of measurement.

The boundaries circumscribing potential yield with and without

additional fertilizer are the curves predicting potential yield without additional

fertilizer (YP0), potential yield with additional fertilizer (YPN), the maximum

expected yield and a cutoff for areas with few or no wheat plants (transition

from soil to plants). The potential yield without additional fertilizer, YP0,

can be calculated directly by Eq. (1).

YP0 ¼ 0:359 e324:4 INSEY ð4Þ

The following equations predict the potential yield with additional N fertilizer,

YPN:

YPN ¼ YP0
�RINDVI NDVIFieldRate � 0:25 and YPN , YPmax ð5aÞ

or

YPN ¼ YPmax YP0
�RINDVI � YPmax ð5bÞ

Observations over several years indicate that values of NDVI , 0.25 occur on

bare soil or on soil with wheat stands so poor at Feekes 5 that they will not

produce appreciable yields.

Examination of Fig. 5 illustrates the critical points of the RI theory for

predicting yield increase. Below field rate NDVI ¼ 0.25, when measured

after 120 days of active plant growth, crop potential yield is considered

low enough that there are no appreciable benefits in adding additional N.

This is the transition from bare soil to wheat. In this example, between

NDVI ¼ 0.25 and NDVI ¼ 0.57 the crop benefits from additional N, and

the potential yield increase is the product of RI and potential yield without

Figure 5. Change in potential yield of wheat with additional N fertilizer for

a Response Index of RI ¼ 1.5, a maximum potential yield of 3.0 Mg ha21 and

120 days after planting where GDD . 0.
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additional N, YP0. Between NDVI ¼ 0.57 and NDVI ¼ 0.73, additional ferti-

lizer can boost grain yield up to the maximum potential yield, YPmax. Beyond

NDVI ¼ 0.73 there is no benefit for additional fertilizer N, because potential

yields have reached the maximum for the field.

The RI theory for predicting yield increase with additional N has

one additional consequence. Increasing the value of RI causes YPN to more

rapidly reach YPmax (Fig. 6). This causes the division point separating

the region where the response index controls YPN from the region where

YPmax limits YPN to shift to lower values of NDVI. At its extreme, where

RINDVI ¼ 4.3, the crop yield at any location in the field and NDVI � 0.25

can be raised to the maximum yield.

The topdress N requirement can be calculated by

R ¼ 23:9
YPN � YP0

h
ð7Þ

where: R is the N application rate, kg/ha; 23.9 is the decimal percentage of N

by weight contained in wheat grain multiplied by a conversion constant h is an

efficiency factor, 0.5 � h � 0.7.

Plots of Eq. (7) for response indices of 1.25, 1.75, and 2.5 illustrate the

effect of the RI on the nitrogen application rate (Fig. 7). The maximum N appli-

cation rate for RI ¼ 1.25 was 23.7 kg ha21, and the peak value did not occur

until the field rate NDVI reached 0.70. As RI increased to 2.5, the peak N appli-

cation rate increased to 72.4 kg ha21, and the peak application rate occurred

at a much lower value of field rate NDVI, 0.45. For the conditions of

YPmax ¼ 3 Mg ha21 and 120 days after planting where GDD . 0, RI would

equal 4.3, the N application rate equals 92.9 kg ha21, and the peak application

rate occurs at NDVI equals 0.25. In that case, only N is the limiting factor.

Figure 6. Shift in portion of the YPN curve for changes in the Response Index,

RI, where YPmax serves as the upper boundary for potential yields from additional N

fertilizer for a maximum potential yield of 3.0 Mg ha21 and 120 days after planting

where GDD . 0.
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Validation of the Oklahoma State University Optical Sensor-Based

Algorithm for Crop Nitrogen Fertilization occurs at two levels, paired com-

parisons of estimated yield from NRich and adjacent field rate fertilizer

strips and an extensive series of field trials testing the algorithm. Earlier this

year, 16 NRich strips sensed with either the GreenSeekerTM sensor or

IKONIS satellite imagery were examined. For the IKONIS imagery, NDVI

was calculated for paired pixels in the NRich strip and the adjacent field

rate area. Pixel size was 4 by 4 m and paired data were separated by one

pixel, 4 m. An examination of the data compared with the imagery showed

that aberrations in the form of spikes in RINDVI occurred whenever the

NRich strip crossed a terrace. These spikes occurred because of the relatively

large pixel size and the fact that data pairs were separated by 4 m and NDVI

values changed between the backside and channel of the terraces. The result

was no relatedness between “paired” measurements. Data in the vicinity of

terraces were deleted. Potential yield was calculated for data from the

NRich strip. YPNRich data were plotted in Fig. 8 along with the YP0, YPN,

YPmax and Soil/Plant transition curves as a function of field rate NDVI.

The YPN curve was calculated using the maximum value of RINDVI along

the strip, RINDVI ¼ 1.37.

All data fell on or below the YPmax cap, but NRich potential yield data

paired with field rate NDVI measurements �0.52 were clustered closely

in the vicinity of the cap. The few measurements falling below the YP0

boundary were a consequence of the limited relatedness that could occur

when measurements separated by 4 m were use to calculate RINDVI. In these

instances, RINDVI ,1. As noted previously, RINDVI provided a conservative

estimate of NDVI with a number of YPNRich data points paralleling the YPN

curve but with values greater than predicted by RINDVI. To overcome the

problem of underestimating potential yield, an alternative response index

Figure 7. N application rate required to maximize wheat grain yield calculated using

the “Optical Sensor-Based Algorithm for Crop Nitrogen Fertilization Optimization”

for three response indices and 3.0 Mg ha21 maximum potential yield, YPN, and

120 days after planting where GDD . 0.
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based on potential yield was formulated, RIYP:

RIYP ¼
YPNRigh

YPFldRate

¼
0:359 e324:4 INSEYNRICH

0:359 e324:4 INSEYFldRate

¼ e324:4ðINSEYNRich�INSEYFldRateÞ ð8Þ

A curve calculated with RIYP ¼ 1.58 (the greatest difference of NDVI and

INSEY between data pairs) bounded all data and passed through the

maximum value of YPNDVI in the region where RI defined YPN. This

NRich strip, as well as the other 16 NRich strips, confirmed the theory that

potential yield with additional N could be increased by the product of YP0

measurement times the response index in the region where the response

index set the boundary. At higher levels of NDVI, all treated areas could be

raised to a “cap,” YPmax.

Over the last 5 years, an extensive series of field trials have been

conducted to test the Optical Sensor Based Algorithm for Crop Nitrogen

Fertilization. Results of these experiments have supported the validity of

the theory and these have been reported at http://www.dasnr.okstate.edu/
nitrogen_use.

Adjusting RI for Reduced or Increased Response to Nitrogen

Evaluation of results testing the Optical Sensor-Based Algorithm for Crop

Nitrogen Fertilization and the NRich strip have shown that there are regions

Figure 8. Potential yield from 4 by 4 m areas within the NRich strip (NRich YP)

plotted as a function of NDVI of paired areas in the adjacent field rate strip bounded

by the curve of potential yield with no additional N (YP0), the cap or plateau of

maximum yield (YPmax), the transition from bare soil to viable crop, and the product

of YP0 and either RINDVI or RIYP. Data from IKONIS imagery of a wheat farm near

Covington, OK.
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in the field where the response to additional N is less than or occasionally

greater than predicted by the algorithm.

Measuring the variability in plant stand and growth at high resolution,

less than 0.4 m2, in farmer fields can enable us to adjust the response

index for mid-season N fertilization in grain crops. In general, this small

area spatial variability can be estimated by the coefficient of variation

(CV) of high-resolution measurements of NDVI. CV has been shown to be

highly correlated with plant population within each 0.4 m2 area. NDVI is

well correlated with N uptake (Stone et al., 1996), and since N uptake is

the product of N content and plant biomass (plant population), it follows

that estimates of N uptake will be improved by identifying changes in

plant population and plant growth. Because of this relationship, more can

be deciphered about the potential yield obtainable with added N fertilization

than by an average value of NDVI within the sensed and treated area. If

plant stands and growth are irregular (high CV), the potential yield with

added N fertilization, RI, will be lower than if plant stands are uniform

(low CV) with the same mean NDVI. On-the-go monitoring of the NDVI

coefficient of variation offers the potential to improve our calculation of N

fertilizer rate.

The ability to accurately measure CV’s on-the-go is also a function of

the sensors employed. The sensors developed by Oklahoma State University

and currently sold by NTech Industries (Ukiah, CA) collect many individual

readings (.10 in each 0.4 m2 traveling at 10 mph). No other precision

agricultural technology being developed today can collect as many compre-

hensive readings on such a small scale, and on-the-go. Work by Taylor et al.

(1997) indicated that 15 to 16 readings from each area of interest were

required to obtain a reliable composite soil sample. The 10 readings

collected from each 0.4 m2 used here were considered to be sufficient to

obtain a composite sample from such a small area, understanding that

the 10 sensor readings were representative of each 0.4 m2 surface

area. The resultant CV from the area of interest is representative of

the variability from the same 0.4 m2 area, not just a small portion as

would be the case with chlorophyll meters. Clearly, plant stands should be

expected to vary at the same scale for which they are planted, which is by

seed in corn.

Over the last 2 years, high-frequency measurements of NDVI were

made and wheat yields collected at 1 m2 resolution (Fig. 9). These data

show a definite relationship between CV within a plot and grain yield,

despite the scatter in data. An Eq. (9) relating the response index to the

coefficient of variation can be derived the linear model for CV – wheat

yield data:

YPCV ¼ �0:0399CV � 3:3736 ð9Þ
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Dividing by the average yield at CV ¼ 0, YPCV0 gives:

YPCV

YPCV0

¼ �0:01219CV þ 1

YPCV=YP0

YPCV0=YP0

¼
RICV

RICV0

¼ �0:01219CV þ 1

RICV ¼ RICV0ð�0:01219CV þ 1Þ ð10Þ

When measured in the field, NDVIFldRate always has a CV . 0. Equation (11)

can be used to calculate the intercept RICV0:

RICV0 ¼
RIMax

�0:1219CVMaxRI

ð11Þ

where RIMax is the maximum response index along the NRich strip and

CVMaxRI is the CV of the field rate NDVI used to calculate RIMax. Predicted

yield using RICV, YPCV, is calculated by Eq. (12):

YPCV ¼ RICV YP0 ð12Þ

These equations hold for RINDVI, RIYP, or any other response index predicting

increased yield with additional fertilizer N. The effect of CV on the response

index is similar to that seen with changes in measured RI (Fig. 10). Although

CV of wheat used to calculate YPmax is generally very low, there can be

instances when yields predicted using RICV are greater than YPmax.

Figure 9. Relationship between observed grain yield and the coefficient of variation

from sensor readings taken at early stages of growth (Feekes 4 to 6) in winter wheat

from 21 locations over a 3-year period, 2000–2003.
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DISCUSSION

If the resolution where significant differences in biological properties (plant or

soil) were found at 0.4 m2, that same resolution would be where recognizable

differences in statistical properties could be discerned as well. Nutrients can

vary at different scales for different reasons. Variability at the finest scale

encompasses all causes. At coarser scales, we average out some of the

cause for variability. Spatial variability of soil nutrients has already been

established for a resolution scale of 0.4 m2. Therefore, variability among

0.4 m2 areas is a function of nutrient availability, whereas variability within

0.4 m2 is likely a function of crop conditions other than nutrient availability.

Furthermore, it should be noted that plants and their roots integrate nutrient

variability that can exist within each 0.4 m2, but that is not expressed

because plant uptake and/or growth will average whatever variability might

be present at that scale.

Although CVs from small yield potential plots assisted in removing some

of the variation in predicted yield when combined with INSEY (in season

estimated yield), this approach is flawed since the CV needs to be applied

to the response index for added N fertilization. Adjusting RI as a function

of CV can account for the inability to reach the yield predicted by RI or

maximum potential yield, YPmax.

The yield potential obtainable without added N fertilization (YP0) for a

minimum sized field element should be independent of CV. This was

confirmed when evaluating the relationship between CV determined from

NDVI readings taken between Feekes 4 and 6 over 21 locations from 2000

to 2003, and where yield data were also collected from 1 m2 areas (Fig. 6).

Although there was a trend for grain yields to decrease with increasing CV,

correlation was poor.

Unlike YP0, the yield potential obtainable with added N fertilization

(YPN) should be dependent on CV. While actual yield level with no added

Figure 10. The effect of CV of high-resolution NDVI measurements on the response

index and potential wheat yield.
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inputs is independent of CV, the yield level that can be achieved if changes or

additions are made is directly related to how much the level of variability

existed within each 0.4 m2 area. When CV is low, a responsive field

element should be capable of greater yield than when a similarly responsive

field element CV is large. To test this concept, observed grain yield

obtained when added N fertilization occurred after sensing was evaluated as

a function of predicted yield using INSEY and the coefficient of variation at

the time of sensing in the equation (YPN_CV). Predictive methods for deter-

mining YPN_CV were delineated in the previous section. For all the plots

reported in Fig. 7, NDVI sensor readings were taken from winter wheat

somewhere between Feekes growth stages 4 and 6. Enough readings were

collected from each plot to determine the CV. Following sensor readings, N

was applied at different rates (varied by location and year) to achieve the

yield potential estimated in the RI-NFOA algorithm. CV data were not used

to determine N application rates. To evaluate the potential usefulness of CV

for predicting the yield that could be achieved with added N fertilization,

actual yield, YPN and YPN_CV were plotted for all 6 trials where these data

were collected (Fig. 11). YPN clearly resulted in overestimating actual

yields obtained, 5.5 Mg ha21. YPN_CV values more closely followed

observed yield. When actual INSEY values exceed 0.006, observed yield

clearly reached a plateau or yield maximum of 3.0 Mg ha21. Although the

Figure 11. Relationship between observed grain yield and in-season-estimated-yield

(INSEY, NDVI divided by the # of days from planting to sensing where growing

degree days were greater than 0), including the predicted yield that could be obtained

with added N fertilization (YPN ¼ INSEY or YP0 times the response index) and YPN

as a function of the coefficient of variation YPN_CV from six trials where added N

fertilization was received after sensing.
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current YPN_CV formula employed resulted in a plateau at somewhat higher

INSEY values (0.008) than with observed yield (0.006), it predicted a yield

plateau.

The need to sense biological properties on a small scale (0.4 m2 or

smaller) was established by Solie et al. (1999). Not until recently did we

consider the evaluation of statistical properties within each 0.4 m2, under-

standing that the variability within each 0.4 m2 would be associated with

something other than nutrient variability that would be minimal at this

scale. Fortunately, the sensors developed and used in all the Oklahoma

State University Sensor research are capable of collecting enough data

within each 0.4 m2 to calculate meaningful statistical estimates at this small

scale. Now, these statistical estimates on each 0.4 m2 can be combined with

average NDVI from the same 0.4 m2 to better predict mid-season yield and

subsequent fertilizer N rate requirements. Using the RI-NFOA algorithm

reported earlier, Raun et al. (2002) showed that winter wheat NUE was

improved by more than 15% when N fertilization was based on INSEY

calculated from optically sensed NDVI, determined for each 1 m2 area, and

the response index when compared to traditional practices at uniform N

rates. We are not aware of any biological basis to suggest that this approach

would not be suitable in other cereal crops.
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