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ABSTRACT
Nitrogen fertilizer continues to be the major input influencing corn

(Zea mays L.) yield in the Midwest. Improved N recommendations
should result in greater N use efficiency and producer profit while re-
ducing surface and groundwater contamination. This study was con-
ducted to develop a plant-based technique to detect and correct N
deficiencies during the season. Chlorophyll meter readings and grain
yield were collected from corn in irrigated monoculture corn and
soybean [Glycine max (L.) Merr.]–corn cropping systems with four
hybrids and five N fertilizer application rates in the Platte Valley near
Shelton, NE. Normalized chlorophyll meter readings (sufficiency in-
dex, SI) were calculated from data collected at three vegetative stages,
defined by thermal time accumulation after planting, during each of
the 10 yr of study (1995–2004). Highly significant linear correlations
between SI and relative yield (normalized yield) indicated both
responded similarly to N fertilizer application. Relationships between
N rate and SI (at each of the three vegetative stages and combined
over stages) were described by quadratic models. The combined
model [(SI 5 0.8073 1 0.002(N rate) 2 0.0000056(N rate)2, R2

5

0.70)] can be used to compute N needed to achieve maximum yield.
Our procedure gives producers the tools to determine if N is needed,
and if so, the amount of N required for maximum yield. In addition if
SI is computed for specific areas of the field, N applications can be
tailored to those areas, thereby reducing the potential of introducing
more N into the system than needed to achieve maximum yield, with
spatial and temporal constraints.

NITROGEN fertilizer recommendations for corn in the
Midwest historically have been centered on yield-

based algorithms. Mulvaney et al. (2006) describe how
these yield-based systems were developed and explain
many of the assumptions including the widely used mass
balance approach. Work by Stanford (1973), Meisinger
(1984), and Meisinger et al. (1992) indicates that when
yield-based systems are used, a constant N-use efficiency
is assumed whether N is taken up from the soil or fer-
tilizer. This assumption becomes somewhat questionable
when results like those published by Fox and Piekielek
(1995) are examined. Fox and Piekielek (1995) in fact
found significant differences in apparent N-use efficien-
cies on nonfertilized control plots between years with
low or high average yields.
The differences in N-use efficiency, depending on crop

yield identified above, demonstrate not only some of the
problems in developingN recommendations for corn but
also the complex interactions among the various factors

to be considered. Stanford (1982) and Keeney (1982)
provide excellent reviews of techniques for creating N
recommendations based on laboratory incubations to
estimate plant availableNmineralized fromorganicmat-
ter and preplant soil tests to determine inorganic nitrate
N. Laboratory incubation methods, inorganic nitrate N
soil tests, and other procedures and techniques to deter-
mineN availability fromother sources required to under-
stand N management for crops are presented in a book
edited by Hauck (1984). Chapters in the book present
and discuss factors from N cycling in soil processes to N
uptake by the crop affecting N-use efficiency in crop
production. This book is just one example of the tremen-
dous past effort by researchers to investigate, describe,
and quantify N cycling processes to determine N avail-
able for crop production, this effort continues today.

In addition to the techniques described above, recent
technological developments including global position-
ing systems, in-season real-time crop sensors, variable
rate N applicators, and geographical information sys-
tems to analyze large amounts of data have improved
our N recommendations. These developments continue
to drive the expectation for further improvements in N
management resulting in greater N application and use
efficiency and producer profit while reducing surface
and groundwater contamination.

In earlier reports, Varvel et al. (1997a, 1997b) demon-
strated that chlorophyll meters provided excellent
indications of in-season N status of several corn hybrids
in both monoculture corn and soybean–corn cropping
systems. In their reports, chlorophyll meter measure-
ments taken throughout the growing season over sev-
eral years indicated these data might have additional
applications; including determination if and how much
additional N fertilizer is needed for maximum yield.
Therefore, our objective was to develop a plant-based
technique to detect and correct N deficiencies during the
cropping season with the ultimate purpose of improving
N-use efficiency, maintaining or improving yield, reduc-
ing N fertilizer costs, and reducing environmental im-
pacts of corn production.

MATERIALS AND METHODS

A study comparing irrigated monoculture corn and soy-
bean–corn cropping systems was initiated in 1991 on a uniform
site in the Platte Valley near Shelton, NE, on a Hord silt loam
(fine-silty, mixed, mesic, Pachic Haplustoll). Data for this
paper are from this site for the 10-yr period of 1995 to 2004.

Before initiation of the study, the site had been in a mono-
culture corn production system for more than 10 yr. At the
beginning of the study, corn stalks from the previous growing
season were shredded and the entire area was disked twice
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before planting. Similarly, each year following, corn stalks from
both cropping systems were shredded and the entire area, in-
cluding that which had been in soybean, was disked twice
before planting.

A split-split-split plot treatment design within a randomized
complete block experiment with four replications was used.
Cropping systems were assigned as the main plots, corn hy-
brids as the subplots, and N fertilizer regimes as the sub-
subplots. All phases of the monoculture corn and soybean–
corn systems appeared each year starting with the 1991 growing
season. Four Pioneer1 brand corn hybrids (3162, 3379, 3394,
and 3417) differing in yield potential and maturity were
selected and used in both the monoculture and rotation sys-
tems from 1991 through 2000. In subsequent years, new corn
hybrids with similar growth characteristics and maturity
groups were selected to replace the four original hybrids.
For 2001 and 2002 they were Pioneer brand hybrids (32R42,
33B50, 33G26, and 33P66) and for 2003 and 2004 they were
Pioneer brand hybrids (31N27, 33B50, 33V15, and 33P66). All
corn hybrids were planted between late April and mid-May in
8-row (91-cm row spacing) by 15.2-m long plots at approx-
imately 74 000 seeds ha21. Soybean in the soybean–corn rota-
tion was planted in early to mid-May. Except for N fertilizer
application rates, both corn and soybean were produced using
production practices typical to the area.

Nitrogen fertilizer as NH4NO3 was broadcast and immedi-
ately incorporated with a 6- to 7-mm sprinkler irrigation in
early June when corn was at approximately V2 or V3 growth
stages (Ritchie et al., 1986). Six fertilizer N regimes including
five fixed N fertilizer rates (0, 50, 100, 150, and 200 kg N ha21)
and one “as needed” rate (Varvel et al., 1997a) were used on
both crops. Only data from the fixed rate treatments were used
for this analysis. Irrigation was provided as needed with a
linear-drive sprinkler system.

In-season corn N status was monitored in both cropping
systems using Minolta SPAD 502 chlorophyll meters (Peterson
et al., 1993) starting at the V8 growth stage and continuing
through R2 (Ritchie et al., 1986). Chlorophyll meter readings
were taken from the uppermost fully expanded leaf (collar
visible) until the VT growth stage. After VT, meter readings
were collected from the ear leaf. All measurements were taken
on 30 randomly selected plants within each plot using the
procedure described by Blackmer et al. (1993).

Chlorophyll meter readings were analyzed by sampling date
each year. As noted in earlier publications (Varvel et al.,
1997a, 1997b), chlorophyll meter readings and grain yields
responded similarly to N fertilizer applications and chlorophyll
meter readings were an excellent indication of N sufficiency or
deficiency in irrigated corn. Actual SPAD readings were nor-
malized to adjust for variation not associated with N nutrition.
The SPAD readings from all treatments were divided by the
maximum reading from all N rates within that cropping sys-
tem, hybrid, and replication within each date and year to
obtain a sufficiency index (SI), which is expressed as a decimal
(Peterson et al., 1993).

Chlorophyll meter data were collected at various sampling
dates each year over the 10 yr of the study. Combining the
data over years required computation of thermal times (grow-
ing degree days, GDD) for each of the dates chlorophyll meter
data were collected. Thermal time computations were made
using Method II of McMaster and Wilhelm (1997). In Method

II computations, daily maximum (TMAX) and minimum (TMIN)
temperatures, a base (TBASE) temperature of 10jC, and a
threshold (TTHRESH) temperature of 30jC are used. Then
GDD 5 [(TMAX 1 TMIN)/2] 2 TBASE with the following con-
ditions: If TMAX , TBASE, then TMAX 5 TBASE, if TMIN , TBASE,
then TMIN 5 TBASE, if TMIN . TTHRESH, then TMIN 5 TTHRESH,
and if TMAX . TTHRESH, then TMAX 5 TTHRESH. These sub-
stitutions are made before calculating (TMAX 1 TMIN)/2.

Final grain yield was determined with a plot combine by
harvesting three interior rows for the entire length of each
plot. Yield data were adjusted to 155 g kg21 moisture. Grain
yield data were also normalized by dividing each yield by
the maximum yield from all fixed N fertilizer rate treatments
within that cropping system, hybrid, and replication to obtain a
relative grain yield—analogous to the computation above of SI
for chlorophyll meter readings.

Data from the study were analyzed both within and across
cropping systems using regression analyses to determine
whether responses to applied N fertilizer were significant.
Four response models (quadratic, quadratic-plus-plateau, ex-
ponential, and square root) were fit to SI and normalized grain
yield data using the NLIN procedure in SAS (Ihnen and
Goodnight, 1985). All statistical analyses were performed
using PC Version 9.1 of the Statistical Analyses System for
Windows (SAS Institute, 2003).

RESULTS AND DISCUSSION
Corn grain yields from both the monoculture corn and

soybean–corn system were collected and analyzed for
this paper, but emphasis has been put on data from the
monoculture corn system because it represented a wider
range of N availability conditions. Grain yields re-
sponded similarly in both cropping systems (Varvel and
Wilhelm, 2003), but response to N fertilizer in mono-
culture corn was much greater in magnitude than in the
soybean–corn system. Also, for the 10 yr of this study,
hybrid differences were significant, but all hybrids re-
sponded similarly to N fertilizer in both cropping sys-
tems (hybrid by N interaction was nonsignificant). These
results eliminated the need to develop response func-
tions for each hybrid. For the remainder of the analyses,
the mean response over all hybrids is described.

Corn grain yields in the monoculture corn system
ranged from 3.50 to 13.63Mg ha21 during the 10 yr of the
study (Fig. 1) and significant responses to the applied N
fertilizer were obtained every year. It is apparent that
although maximum grain yields varied from year to year
(ranging from a low of 10.44 Mg ha21 in 1995 to a high
of 13.63 Mg ha21 in 2004), in most years maximum
yield occurred between the 150 and 200 kg N ha21 rate
(Fig. 1). Regression analyses performed on these data,
combined over years, using a quadratic response model
indicated the maximum yield occurred at 174 kg N ha21

for this site. For each year individually, regression anal-
ysis indicated maximum grain yield occurred within
10 kg N ha21 of the 174 kg N ha21 in all years except
1995 (140 kg N ha21) and 2004 (200 kg N ha21). This re-
sult supports conclusions fromresearchbyBlackmeret al.
(1997) in Iowa, Fox andPiekielek (1995) in Pennsylvania,
Kachanoski et al. (1996) in Ontario, Canada, Mulvaney
et al. (2006) in Illinois, and Vanotti and Bundy (1994)
in Wisconsin, that contradict the yield goal method for

1Trade names and company names are included for the benefit of
the reader and do not imply any endorsement or preferential treat-
ment of the product by the authors, USDA–Agricultural Research
Service, or the Agricultural Research Division of the University
of Nebraska.
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making N fertilizer recommendations for corn. This
method has relied on a yield goal based system that as-
sumes a constant factor of 19.4 to 24.2 kgNMg21 of grain,
multiplied by the expected yield goal to generate the basic
N application recommendation (Mulvaney et al., 2006).
Using this approach with actual maximum yields from
each individual year for the results from our multiyear
study would have produced different N fertilizer recom-
mendations calculated across years ranging from a low of
203 kg N ha21 in 1995 to a high of 264 kg N ha21 in 2004
(using the more conservative 19.4 kg N Mg21 factor).
Obviously if the greater factor, 24.2 kgNMg21 grainwere
used, the magnitude and range of N fertilizer recommen-
dations would be greater. Even if we used the average
maximum yield over the 10-yr period, 12.1 Mg ha21,
235 kg N ha21 would have been recommended on an
annual basis. All of these recommendations are much
higher than the 174 kg N ha21 indicated by solving for
the maximum of the quadratic response function de-
scribing the data in Fig. 1. These results support the fact
that factors other than, or in addition to, amount of avail-
able N determines fluctuations in maximum corn grain
yields from year to year. Some of these factors are rain-
fall amount and seasonal distribution, soil water condi-
tions, thermal time accumulation patterns, total incoming
and intercepted radiation, dates of planting, and inten-
sity of pests and diseases.
Our approach to solving the dilemma of predicting

the amount of N needed to maximize yield involved use
of SPAD 502 chlorophyll meters (Peterson et al., 1993)
for in-season monitoring of plant N status. Chlorophyll
meter data had been shown to be highly correlated with
in-season N status of corn (Varvel et al., 1997a, 1997b),
but data throughout the years were collected on cal-
endar date (i.e., every Wednesday) and not linked to
specific developmental stage for the plant. Basing the
analyses on calendar day, days after planting, or days
after emergence proved unsuccessful. This obstacle had
to be overcome before we could test whether a modeling
approach that could predict if additional N was needed,
and howmuch, additional N would be required for maxi-
mum yield would function successfully. Our solution
was to use thermal time accumulation (GDD) based on
Method II of McMaster and Wilhelm (1997). This ap-
proach allowed data to be combined and compared both
within and across the 10 yr of the study.

Determination of N deficiencies at the earliest pos-
sible time in the growing season (earliest stage of crop
development) will increase a producer’s opportunity
and potential ability to correct that deficiency. Chloro-
phyll meter data were consistently available in all years
at or near 450, 560, and 670 GDD, corresponding ap-
proximately to V8, V10, and V12 growth stages (Ritchie
et al., 1986), respectively. Analyses of data collected at
these times from the monoculture corn system were
used to determine how early in the season chlorophyll
meter data could be used to predict future crop N need,
how much N was needed, and if analyses based on data
collected later in the season improved the accuracy of
predicted N need.

As noted above, Varvel et al. (1997a, 1997b) dem-
onstrated N fertilizer significantly increased both corn
grain yield and chlorophyll meter readings in this study.
Since the specific grain yield response to appliedNvaried
from year to year (Fig. 1), yield data were normalized
bydividingeachyieldby themaximumyield fromall fixed
N fertilizer rate treatments within that cropping sys-
tem, hybrid, and replication to obtain a relative grain
yield (Fig. 2)—analogous to the computation of SI for
chlorophyll meter readings. Linear correlations between
relative grain yield andSI at the three times (450, 560, and
670 GDD) each year across the 10 yr of the study in-
dicated the variables were highly related and that nor-
malized yield and SI responded similarly to N fertilizer
(Table 1).

The task of describing the relationship between N rate
and SI remained. The first step of this process was to
select an equation of appropriate form. Using the ap-
proach described by Cerrato and Blackmer (1990),
four of the response models they described (quadratic,
quadratic-plus-plateau, exponential, and square root)
were fit to the data using NLIN procedure in SAS (Ihnen
and Goodnight, 1985). All four models had R2 values of
approximately 0.70, similar mean square errors, and
residuals that were normally distributed with a slight bias
at the highest N fertilizer rates (data not shown). Given
that chlorophyll meter-based SI values were normalized
to maximum values of one, this bias was expected. Taken
in total, these factors indicated all functions fit the data
similarly. Our previous publications (Varvel et al., 1997a,
1997b) from this long-term study show that both yields
and chlorophyll meter readings decreased slightly at N
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Fig. 1. Corn grain yield response to N fertilizer applications each year in an irrigated monoculture corn cropping system at Shelton, NE (1995–2004).
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fertilizer rates above optimum (quadratic response). Col-
lectively these facts support our decision to use the
quadratic model to describe the relationship between N
fertilizer rate and relative corn grain yield. In a recent
publication, Miguez and Bollero (2006) also used the
quadratic model in their analyses to describe the rela-
tionship between N fertilizer rate and corn grain yield.
Quadratic models for the three observation times (at

450, 560, and 670 GDD) had intercepts and linear and
quadratic coefficients similar in magnitude (Table 2).
However when compared using contrast statements in
regression analyses, they were determined to be statis-
tically different. This outcome is not surprising consider-
ing the large number of degrees of freedom in the
analyses (N5 800). All three equations reached a maxi-
mumSI at about 170 kgNha21, similar to the 174 kg ha21

N rate found from regression of N rate and maximum
grain yield from data in Fig. 1. These results, and the
relative similarity of the equations, indicated chlorophyll
meter-based SI values throughout much of vegetative
growth for corn were fairly stable. Based on this premise,
we felt it was appropriate to combine data from all three
thermal times and fit a single quadratic model to test
its appropriateness for use across the vegetative phase
(Table 2). As would be expected, this model was very
similar to the models from the individual thermal times,
with the intercept and linear and quadratic coefficients
intermediate to those describing the SI response at each
individual thermal time (Table 2). Again, given the ex-
ceptionally large number of degrees of freedomavailable
(N 5 2400), when this equation was compared to the
three separate equations using an F test, it was found
to be significantly different. In spite of statistical pro-

cedures, the combined quadratic model appeared similar
to the individual equations obtained at the three thermal
times, and it seemed plausible that it could be used to
represent the relationship between SI and N fertilizer
rates throughout the vegetative growth period.

From a practical standpoint, this approach seemed
worthy of consideration. Also, the optimum N fertilizer
rate of 179 kg N ha21 for the overall model was again
very close to those obtained for the individual thermal
time models. Using this information, we determined
the amount of N fertilizer that would be recommended
from each of the individual thermal time equations and
from the overall equation at selected SI values. This test
seemed to be a practical way to determine how much
variation would be obtained in the amount of N fertilizer
recommended from the so-called “statistically different”
equations. Using SI values of 0.90, 0.925, and 0.95, the
calculated amount of N needed from the three thermal
time equations ranged from 112 to 145 kg N ha21, 95 to
122 kg N ha21, and 72 to 94 kg N ha21, respectively.
Using these same SI values (0.90, 0.925, and 0.95), the
calculated amounts of N needed from the overall equa-
tion were 125, 105, and 80 kg N ha21, respectively. Al-
though the values are slightly different, given the amount
of natural variation in field situations, the amounts of
N fertilizer recommended using the overall equation
are representative of the range of rates recommended
fromthe individual equations.Practically,usingoneequa-
tion from approximately V8 through V12 growth stages
to determine potential N fertilizer needs is much easier
to implement.

Logically, a question arises as to whether this model is
specific to monoculture corn. Because the relationship is

Table 1. Linear correlation of relative corn grain yield with relative chlorophyll meter readings at different stages in an irrigated mono-
culture corn system for 1995 through 2004 at Shelton, NE.

Linear correlation coefficients (r)†

Thermal time, GDD‡ 1995§ 1996 1997 1998 1999 2000 2001 2002 2003 2004 1995–2004¶

�C day
450 0.55 0.79 0.82 0.86 0.82 0.79 0.84 0.75 0.93 0.72 0.73
560 0.66 0.85 0.74 0.92 0.90 0.88 0.85 0.75 0.94 0.79 0.78
670 0.66 0.90 0.74 0.84 0.89 0.88 0.90 0.73 0.91 0.76 0.78

†All correlations above were significant at the 0.001 probability levels.
‡Thermal time (GDD) by Method II (McMaster and Wilhelm, 1997).
§ 80 data points were used for each individual year and thermal time linear correlation analyses.
¶ 800 data points were used for the overall (1995–2004) linear correlation analyses.
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Fig. 2. Relative corn grain yield response to N fertilizer applications each year in an irrigated monoculture corn cropping system at Shelton,
NE (1995–2004).
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built on in-season assessment of canopy N status, all
sources and uses of N by the crop and other compo-
nents of the N cycle are accounted for and N availability
is “reported” by the plant. We believe the model is
valid beyond its conditions of development, monocul-
ture corn. Earlier research indicated corn following
soybean at this location required less preplant fertilizer
(65 kg N ha21 yr21 less) for maximum grain yields than
in the monoculture corn system (Varvel and Wilhelm,
2003). In addition, maximum grain yields were generally
greater for the soybean–corn system than for the mono-
culture corn system (Varvel and Wilhelm, 2003). To test
our supposition, SI data collected from the soybean–
corn system for all three thermal times (2400 additional
observations) was combined with the data from the
monoculture corn system and analyzed as described
above. The optimum N fertilizer rate for maximum SI
(176 kg N ha21) was almost identical to that for the
monoculture corn system, demonstrating our model’s
robustness and applicability in other cropping situations
with varying amounts of available N early in the grow-
ing season. This analysis also demonstrated that even
though the magnitude of N response was much less
in the soybean–corn system, the response curves maxi-
mums were similar. Since the magnitude of response was
less, it was also obvious that SI values in the soybean–
corn system were much greater, indicating that less addi-
tional N fertilizer would need to be added for maximum

grain yields. As we had postulated above, by monitoring
the plant we were able to give credit for the additional N
available to corn following soybean.

CONCLUSIONS
Analyses presented in this paper indicate chlorophyll

meters can be used to determine the amount of N needed
for maximum yields. Several researchers have demon-
strated that chlorophyll meters can be used during the
growing season to determine whether corn is N deficient
(Blackmer and Schepers, 1995; Peterson et al., 1993;
Varvel et al., 1997a), but few, if any, have had success
quantifying the amount of N fertilizer needed for a single
in-season application. Our results indicate this is possible
for monoculture corn and soybean–corn systems, at least
in environments similar to the Shelton experiment. This
procedure requires areas where sufficient N fertilizer
(beyond yield-limiting rates) has been applied so that
SI values can be determined, a condition not difficult to
accomplish. Once an area of well-fertilized corn (non-
yield limiting) has been established, our model indi-
cates that we can collect chlorophyll meter data anytime
during vegetative growth between V8 and V12 from
several areas of the field, which is then compared to data
from the well-fertilized area to determine SI values.
These values can then be put into the generalized model
shown in Table 2 or graphically in Fig. 3 and solved
for N rate. This N rate is the theoretical amount of
preplant N fertilizer required to obtain that SI. This
theoretical amount is subtracted from the optimum N
rate (179 kg N ha21) to determine the amount of N
fertilizer (Fig. 3) to be applied at or very near the time of
chlorophyll meter data collection to achieve the maxi-
mum yield obtainable within the constraints of location
and season.

The outlined methodology is a more proactive ap-
proach to uniform preplant N applications and should
reduce N losses due to leaching or denitrification be-
cause the N is being applied during the period of highest
demand by the corn plant. It also gives producers the
option to site-specifically apply N fertilizer only to those
areas where needed if they have equipment to variably
apply N. Future plans include additional testing of the
model on producer fields and other locations.
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Fig. 3. Quadratic response model from regression analyses of relative chlorophyll meter readings (SI) and N fertilizer rates at all growth stages
combined for (1995–2004) monoculture corn data at Shelton, NE, and an example of an in-season N application calculation.

Table 2. Quadratic response models from regression analyses of
relative chlorophyll meter readings (SI) and N fertilizer rates at
three thermal times (GDD) separate and combined for (1995–
2004) monoculture corn data at Shelton, NE.

Thermal time, GDD† Quadratic model‡ N§ R2
¶

�C day
450 SI 5 0.8324 1 0.00160(N rate)

2 0.00000417(N rate)2
800 0.64***

560 SI 5 0.7982 1 0.00211(N rate)
2 0.00000585(N rate)2

800 0.75***

670 SI 5 0.7914 1 0.00230(N rate)
2 0.00000680(N rate)2

800 0.73***

All SI 5 0.8073 1 0.00200(N rate)
2 0.00000560(N rate)2

2400 0.70***

*** Significant at the 0.001 probability level.
†Thermal time (GDD) by Method II (McMaster and Wilhelm, 1997).
‡N rate in kg ha21.
§Number of data points used in regression analyses.
¶Regression correlation coefficient for the model.
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This general approach should be valid regardless of
the instruments used to acquire data for SI. The only re-
quirements are that the instrument readings respond to
N rate and they are related to yield. These limitations
are quite reasonable and should allow the approach to
be used with the array of on-the-go sensors under de-
velopment at this time.Wide-area use of modern sensors
and this method of assessing the amount of N needed to
maximize yield will reduce application of N in excess of
crop need while maintaining high yield levels required
for profitable grain production enterprises.
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