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Abstract
Accurate winter wheat (Triticum aestivum L.) grain yield prediction is vital for

improving N management decisions. Currently, most N optimization algorithms use

in-season estimated yield (INSEY) as a sole variable for predicting grain yield poten-

tial (YP). Although evidence suggests that this works, the yield prediction accuracy

could be further improved by including other predictors in the model. The objective

of this work was to evaluate INSEY, pre-plant N rate, total rainfall, and average air

temperature from September to December as predictors of winter wheat YP. An 8-

yr (2012–2019) data set for grain yield was obtained from Experiment 502, Lahoma,

OK. The experiment was designed as a randomized complete block with four replica-

tions and N applied at 0, 45, 67, 90, and 112 kg ha–1. Weather data was obtained from

the Oklahoma Mesonet (http://mesonet.org). The data were analyzed using R statisti-

cal computing platform. The best model was selected using least absolute shrinkage

and selection operator. Root mean square error (RMSE) was obtained using k-fold

cross-validation. The model selection algorithm produced the full model as the best

model for yield prediction with an R2 of .79 and RMSE of 0.54 Mg ha–1. The best

one-variable model – as expected – used INSEY as the predictor and had the highest

RMSE of 0.72 Mg ha–1 and an R2 of .62. Mid-season YP prediction accuracy could

be improved by including pre-plant N rate, mean air temperature, and total rainfall

from September to December in a model already containing INSEY.

1 INTRODUCTION

Winter wheat (Triticum aestivum L.) is one of the most impor-

tant cereal crops produced around the world. Globally, it

is grown on more than 19% (220 million ha) of the crop

Abbreviations: GDD, growing degree days; INSEY, in-season estimated

yield; LASSO, least absolute shrinkage and selection operator; NDVI,

normalized difference vegetation index; RMSE, root mean square error; YP,

yield potential.
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production area (Dhillon et al., 2019) and yielded 0.74 bil-

lion Mg in 2015 (Omara et al., 2019). Because of its impor-

tance, researchers are constantly exploring new opportuni-

ties to improve wheat production and productivity. A substan-

tial amount of N is applied each year to sustain or improve

yield levels. In 2015 alone, 61.2 million Mg of N was applied

worldwide for cereal production (Omara et al., 2019). In some

cases, producers apply N beyond requirements for the maxi-

mum yield of a given crop (Cui et al., 2008; Ju et al., 2004).
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This increases the likelihood of a significant loss of some of

the applied N. This is why understanding the yield level is

crucial for a variety of reasons including N management deci-

sion for a particular field. In the past – and in some cases today

– yield goal was a common method for estimating the yield

potential (YP) of the crop-growing environment before plant-

ing (Dahnke et al., 1988; Raun et al., 2017). This approach

involves averaging grain yield for the past 3–5 yr plus 10–

20% of the mean grain yield (Raun et al., 2017). Based on

this yield estimate, an amount of N to apply is arrived at using

the assumption that 1 Mg wheat grain yield requires 33 kg N

(Zhang & Raun, 2006). However, in a comprehensive eval-

uation of yield goal, Raun et al. (2017) concluded that yield

goal explains only a small proportion of the variability in win-

ter wheat grain yield (<0.01–16%), making it less effective at

estimating YP and consequently the quantity of N to apply.

Nonetheless, it is still an approach used by producers around

the world.

In order to overcome the inadequacy of relating yield goal

to N rate, other researchers evaluated alternative approaches

such as economic or agronomic optimum N rate. In this

approach, the amount of N to apply is estimated from a linear

plateau, quadratic, or quadratic plateau fit (Makowski et al.,

1999; Ortuzar-Iragorri et al., 2010; Thomason et al., 2011).

These methods assume that there is a point (N rate) beyond

which application of more N results in no added yield ben-

efit and may begin to decline. It is this rate that these meth-

ods assume will result in grain yield that generates the best

economic return to the producer. Sometimes, soil samples are

taken to quantify the amount of N present in the soil prior to

planting (Bundy & Andraski, 2004). This allows for adjust-

ment of the amount of N recommended by some of the meth-

ods highlighted above. While these approaches may improve

estimates for crop N demand, they do not extensively address

changes in soil N supply that may occur during the course of

the crop growing season.

Several other methods exist for predicting YP for different

crops (Ransom et al., 2020) but perhaps the one that gained

the most widespread attention involves the use of optical sen-

sors (Cao et al., 2015; Dhillon, Eickhoff, et al., 2020; Franzen

et al., 2016; Li et al., 2009; Liu et al., 2017; Shanahan et al.,

2008). In this approach, spectral reflectance values are col-

lected mid-season and then normalized to give a normalized

difference vegetation index (NDVI). By obtaining NDVI mid-

season, producers are able to determine whether there is a

need for additional N or not. According to Raun et al. (2002),

NDVI for winter wheat obtained between Feekes 4 (FK4) and

Feekes 6 (FK6) growth stages improves the precision of pre-

diction of YP without added N (YP0). When these NDVI

values are divided by growing degree days (GDD) to obtain

the in-season estimated yield (INSEY) and used to predict

observed yield, the accuracy with which yield is predicted is

greatly improved. As much as 54% of the grain yield vari-

Core Ideas
∙ The model that used INSEY alone had a high

RMSE of 0.72 Mg ha–1.

∙ Yield prediction improved for a model that used

INSEY, N, and weather variables (0.54 Mg ha–1).

∙ After INSEY, N rate was the second most impor-

tant predictor for yield prediction.

ability can be explained using INSEY compared to the mass

balance method such as yield goal that one study found to

account for no more than 16% of the grain yield variations

(Raun et al., 2017). Raun et al. (2005) also reported that crop

response to N (response index or RI) can be obtained by divid-

ing NDVI from N-rich strip by NDVI from plots with less or

no N applied (farmer practice). Knowing the RI then facili-

tates the prediction of YP with added N (YPN) (Raun et al.,

2002). Using this approach, it is possible to more accurately

recommend and apply N mid-season to obtain a high yield

in a given wheat-growing environment (Morris et al., 2006;

Mullen et al., 2003). In a recent review of active optical sen-

sors, Aula et al. (2020) found that this approach for N man-

agement could save as much as 53 kg N ha−1 while simulta-

neously sustaining grain yield level.

Despite the improved yield prediction accuracy, the

GreenSeeker (Trimble Navigation Limited for GreenSeeker)

algorithm has opportunities for improvement (Aula et al.,

2020). This is evidenced by the 54% of the variability in grain

yield explained by the algorithm using INSEY as a sole pre-

dictor (Raun et al., 2005). This suggests that approximately

46% of the variability in grain yield remains unexplained by

the model. When Colaço and Bramley (2019) analyzed data

from multiple years in two locations, INSEY was found to

explain even a much lower proportion of the variability in

grain yield with an R2 of .25. This is possibly because there

are numerous environment variables that need to be included

in future algorithms for an improved yield prediction and N

estimation (Raun et al., 2019). This indicates that INSEY as a

sole predictor may become less effective at accurately predict-

ing YP due to increased entropy over time. Yet, most optical

sensor algorithms that rely on INSEY do not include other

predictors of YP (Colaço & Bramley, 2019; Li et al., 2009;

Raun et al., 2001). They assume that much of the variability

in yield is explained by INSEY. As highlighted above, INSEY

may not explain all the variations in grain yield, making it

necessary to consider other variables that could improve the

predictive capability of future algorithms. Our study hypoth-

esizes that pre-plant N rate, total rainfall, and average temper-

ature from September to December could play a major role in

improving yield prediction and estimate of the quantity of N to
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apply mid-season. Colaço and Bramley (2019) also reported

the need to include other variables that may improve yield

prediction accuracy. In a maize (Zea mays L.) study, Dhillon,

Aula, et al. (2020) revealed that including weather variables

such as fractional water index, soil, and air temperatures

increases the possibility of accurately predicting YP mid-

season. As such, the inclusion of more predictors in the algo-

rithm for winter wheat presents an opportunity to improve its

robustness. The variables that this study intends to evaluate

may influence wheat grain yield in different ways and each

may have a unique contribution in predicting grain yield. For

example, winter wheat grain yield is likely lower as temper-

ature increases above the optimum level (Batts et al., 1997;

Gibson & Paulsen, 1999; Kristensen et al., 2011). This is par-

ticularly true if CO2 concentration in the atmosphere is low

(Batts et al., 1997). Generally, temperature has been increas-

ing over the decades and more rapidly during colder periods

(Stewart et al., 2018). The recent rise in winter temperatures

may make yield prediction more challenging with one inde-

pendent variable (Raun et al., 2019). During the September–

December period, winter wheat also undergoes the vernaliza-

tion process in order to promote flowering later (Streck et al.,

2003) and any change in temperature is likely to influence the

final grain yield, making it potentially necessary to improve

the robustness of an algorithm for yield prediction. Winter

wheat also requires enough soil moisture for proper estab-

lishment and development (He et al., 2016) and this possi-

bly begins with promoting high seed germination and emer-

gence to achieve a uniform plant stand. Stone and Schlegel

(2006) showed that soil water content at emergence was able

to explain as much as 70% of the variation in grain yield. This

suggests that adequate rainfall to replenish soil moisture dur-

ing germination and emergence could play a role in grain yield

prediction. Meanwhile, other authors reported that winter pre-

cipitation and spring temperature have less influence on grain

yield (Kristensen et al., 2011). Embedding the contribution

from each of these predictors in the algorithm may increase

the likelihood of accurately predicting mid-season YP, a key

step for estimating the quantity of N to apply.

Therefore, this study aims to improve the accuracy of pre-

diction of YP using INSEY and selected weather variables.

2 MATERIALS AND METHODS

2.1 Site description and experimental and
treatment designs

Data sets from Experiment 502 (E502) located in Lahoma,

OK (36˚23′15″ N, 98˚06′30″ W) were used to build and vali-

date a model for yield prediction. This experiment was estab-

lished in 1971 under continuous winter wheat. The soil at

the experimental site is a Grant silt loam with a 1–3% slope

(fine-silty, mixed, superactive, thermic, Udic Argiustoll). The

site was under conventional tillage from 1971 to 2010 and was

changed to no-till in 2010–2011 and that continues today.

The experiment was set up as a randomized complete block

design with 14 treatments and four replications. For this study,

six treatments where N was the only factor with variable lev-

els (0, 22, 45, 67, 90, and 112 kg N ha−1) were selected. Urea

(46–0–0) was applied pre-plant as the source of N. The study

also selected 8 yr of data for developing the model, that is,

from 2012 to 2019. These years were selected because they

represented a period where full records of NDVI data for FK4

and FK5 required for algorithm development were available.

These stages correspond to between 90 and 110 GDD needed

to accurately predict grain YP using active optical sensor mea-

surements (Dhillon, Figueiredo, et al., 2020). Normalized dif-

ference vegetation index collected using the GreenSeeker sen-

sor was calculated as shown in Equation 1 (Bushong et al.,

2016):

INSEY =
NDVI at (FK4 + FK5)

GDD at FK4
(1)

where NIR, near-infrared surface reflectance measured at

a specific wavelength of 780 nm while Red was surface

reflectance measured at a wavelength of 660 nm in the vis-

ible region of the electromagnetic spectrum.

Each year, grain harvest was accomplished using a self-

propelled combine and grain yield adjusted to 12.5% moisture

content. From each experimental unit in each year, NDVI data

was collected at FK4 and FK5. A total of two NDVI values

were collected from each crop growth stage associated with a

particular treatment within a period of 60 s. These values were

averaged to produce a single NDVI value. The time for collec-

tion of NDVI was between 9:00 and 10:00 a.m., U.S. central

time. Growing degree days at each of the growth stages were

also obtained from the Oklahoma Mesonet (2020). These

stages were selected because FK4 accounts for plant grow-

ing conditions and its health while the second measurement at

FK5 corrects for radiometric errors (Raun et al., 2001). Rain-

fall and air temperature data from September to December

were also obtained from the Oklahoma Mesonet (2020). The

cropping season was from September to June. As a result, the

grain yield recorded in 2012 was obtained using rainfall from

September 2011 to June 2012. However, rains used in model

development and validation were those that occurred early

in the season (September–December) as they could permit

prediction of the final grain yield well ahead of harvest and,

as noted by Raun et al. (2002), use that information to esti-

mate the quantity of N to apply mid-season. For instance,

air temperature and rainfall used to build a model or make

a prediction of the observed grain yield in 2012 was the

average air temperature and sum of rainfall from September
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T A B L E 1 Treatment design for the regional experiment located at Hennessey, OK

N applied
Treatment Pre-plant Topdress Total

kg ha−1

1 0 0 0

2 168 0 168

3 28 0 28

4 28 28 56

5 28 56 84

6 28 84 112

7 28 112 140

8 28 140 168

9 56 56 112

10 112 0 112

11 56 0 56

12 84 0 84

13 140 0 140

14 225 0 225

to December 2011. The technical details of the Oklahoma

Mesonet (2020) are well documented by Brock et al. (1995)

and McPherson et al. (2007).

In-season estimated yield was obtained using Equation 2

below:

INSEY =
NDVI at (FK4 + FK5)

GDD at FK4
(2)

where GDD, growing degree day computed as

(𝑇max+𝑇min
2 − 𝑇𝑏𝑎𝑠𝑒 > 0) with Tmax, Tmin, and Tbase defined

as daily maximum, daily minimum, and base (4.4 ˚C)

temperatures, respectively.

A more detailed description and evolution of yield predic-

tion and N fertilization algorithms are contained in research

work accomplished by Raun et al. (2001), Raun et al. (2002),

and Raun et al. (2005).

Additional data was obtained from an experiment located

at Hennessey, OK (36˚06′58.3″ N 97˚54′02.6″ W) – about

50 km from Lahoma experimental site – and used to fur-

ther evaluate the performance of the model. This data used

was pooled from two different years, that is, 2012 and 2013.

The soil at Hennessey is a Bethany silt loam with a 0–1%

slope (fine, mixed, superactive, thermic Pachic Paleustoll).

This particular experiment had a randomized complete block

design comprising of 14 treatments, each replicated four

times. The treatment design consisted of various pre-plant

N rates and a combination of pre-plant and topdress N rates

ranging from 0 to 225 kg ha−1 (Table 1). Only the pre-plant

N rate was used in the algorithm for yield prediction.

2.2 Statistical analysis, model development,
and cross-validation

Statistical analyses and algorithm development were per-

formed using R statistical computing platform (R Core

Team, 2020). The packages used included ggplot2 within

the tidyverse package for data visualization (Wickham et al.,

2019), glmnet for implementing the least absolute shrink-

age and selection operator (LASSO) algorithm (Friedman

et al., 2010), ggpmisc for generating and labelling p value

and r2 on the graphs (Aphalo, 2020) and readxl for import-

ing MS Excel data into R (Wickham & Bryan, 2019).

The predictors were evaluated and variables that best fit a

model were selected using LASSO. In implementing LASSO,

the 8-yr data set from the Lahoma experimental site was

split into two equal parts, that is, training and validation

sets.

The best one-variable, two-variable, and three-variable

models were also fitted using LASSO after identifying them

based on Bayesian Information Criterion (BIC) generated via

best subset selection algorithm (James et al., 2013). This

allowed for the evaluation of the performance of the most

commonly used one-variable model that works with INSEY

as a sole independent variable against models that used more

than one predictor. The precision with which the model accu-

rately predicted grain yield was obtained using root mean

square error (RMSE). Root mean square error was obtained

using k-fold cross-validation approach with k groups = 10

(James et al., 2013).
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T A B L E 2 Selection and evaluation of models for winter wheat grain yield prediction using data from Lahoma, OK

Model category Equationa,b RMSEc R2d

Mg ha−1

1-variable model Yield = −0.46 + 309.7 × INSEY 0.716 .620

2-variable model Yield = −0.83 + 277.2 × INSEY + 0.013 × N rate 0.605 .729

3-variable model Yield = −3.11 + 282.8 × INSEY + 0.013 × N rate + 0.18 × Temp 0.571 .758

4-variable model Yield = −4.8 + 202.0 × INSEY + 0.014 × N rate+0.31 × Temp + 0.0041 × Rain 0.539 .785

aModel selection and parameter estimates were achieved using least absolute shrinkage and selection operator (LASSO). The predictor(s) that constituted each model

category was determined using best subset selection algorithm followed by fitting a model using LASSO to obtain RMSE and R2.

bThe predictors included INSEY, in-season estimated yield; N rate, amount of nitrogen applied pre-plant (kg ha−1); Rain, total rainfall from September to December (mm);

Temp, mean air temperature from September to December (˚C).
cRMSE, root mean square error obtained using k-fold cross-validation.
dR2 was obtained from the relationship between predicted and observed grain yield.

F I G U R E 1 The relationship between predicted and measured

grain yield for a model that used in-season estimated yield (INSEY) as

the sole predictor (Yield = −0.46 + 309.7 × INSEY)

3 RESULTS AND DISCUSSION

This study evaluated four predictors – INSEY, pre-plant N

rate, total rainfall and average temperature from September to

December – with the aim of selecting key variables for use in

an algorithm to predict winter wheat grain yield. The results

are shown in Table 2. Cross-validation showed that the model

with the highest yield prediction accuracy used all the four

predictors (full model). This model had a root mean square

error (RMSE) of 0.54 Mg ha−1 (Table 2). This suggests that

on average, the model predicted a grain yield that differed

from the measured grain yield by ± 0.54 Mg ha−1. Much of

the information required to predict winter wheat grain yield

was provided by INSEY. This was why it was the best one-

variable model with an R2 of .62 (Table 2, Figure 1). How-

ever, the best one-variable model also had the highest RMSE

of 0.72 Mg ha−1. The 0.62 coefficient of determination is

F I G U R E 2 The relationship between predicted and observed

grain yield at Lahoma, OK, obtained using an algorithm that selected

all the four predictors (Yield = −4.8 + 202.0 × INSEY + 0.014 × N

rate + 0.0041 × Rain + 0.31 × Temp). INSEY, in-season estimated

yield; N rate, amount of nitrogen applied pre-plant; Rain, total rainfall

from September to December; Temp, average air temperature from

September to December

within the range reported in other studies. For instance, Raun

et al. (2005) and Li et al. (2009) indicated that a model using

INSEY as a single independent variable explained between

43.0 and 72.9% of the variability in winter wheat grain yield.

When the model included all the predictors, RMSE was

reduced from 0.72 Mg ha−1 when INSEY was the only pre-

dictor to 0.54 Mg ha−1 (Table 2). This was accompanied by

an increase in R2 from .62 to .79 (Figures 1 and 2). This is an

indication that including pre-plant N rate, rainfall, and tem-

perature to the model that already contained INSEY, improves

winter wheat yield prediction accuracy.

This provided evidence that while INSEY explained about

62% of the variation in winter wheat grain yield, it is impor-

tant to include other relevant predictors in order to improve the
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model’s robustness to predict YP. In our study, including pre-

plant N rate, rainfall, and temperature in the model allowed

for more than 78% of the yield variability to be explained.

A similar increase in precision of yield prediction was also

reported by Zhang et al. (2017) where they found RMSE to

reduce from as high as 0.60 Mg ha−1 when NDVI was the

sole predictor to 0.39 Mg ha−1 when NDVI was used in the

model alongside other predictors. In the past, other scholars

also proposed including other predictors in the model that uses

INSEY in order to increase the precision of yield prediction.

For instance, Bushong et al. (2016) showed that using soil

moisture and INSEY led to a lower RMSE of 0.92 Mg ha−1

compared to 0.95 Mg ha−1 generated with a model having

INSEY as a sole predictor. Colaço and Bramley (2019) advo-

cated for the inclusion of deep soil moisture data collected

between 50 and 90 d after planting to realistically account for

variability in wheat grain yield. They found INSEY from mul-

tiple years and locations to account for only 25% of the varia-

tion in grain yield. Walsh et al. (2013) multiplied soil moisture

at 5-cm depth with INSEY and used the product as a predictor

for grain yield and found it to have a higher R2 of .61 when

compared to .31 R2 value associated with a model that used

INSEY as the only independent variable. While these authors

proposed including INSEY together with a different variable

(soil moisture) to the ones used in our study, all the studies

showed that yield prediction accuracy is higher when INSEY

is used alongside other predictors.

Nonetheless, the model selection algorithm only consid-

ered weather variables when pre-plant N rate was already

added to the model (Table 2). This meant that after INSEY,

pre-plant N rate was the second most important variable

included in the model. Including the pre-plant N rate to the

model already containing INSEY, reduced RMSE from 0.72

to 0.61 Mg ha−1 (Table 2). In other words, the ability of the

model to explain variation in wheat grain yield increased from

62.0 to 72.9% (Table 2). This illustrates the relevance of pre-

plant N rate in improving our ability to accurately predict

wheat grain YP.

Although NDVI used to generate INSEY reflected the plant

N uptake (Cabrera-Bosquet et al., 2011; Tremblay et al.,

2009), the quantity of N applied pre-plant may provide addi-

tional information that is relevant for predicting the final grain

yield. Berntsen et al. (2006) found wheat grain yield to be

associated with N applied. Raun et al. (2002) indicated that

some doses of N applied pre-plant followed by the sensor-

based recommended N rate is necessary for maximizing win-

ter wheat grain YP. This pre-plant N could help to increase the

number of tillers while at the same time minimizing competi-

tion that may occur among tillers without additional N appli-

cation (Efretuei et al., 2016).

The algorithm for model selection further added mean tem-

perature and total rainfall from September to December to the

model that already had INSEY and pre-plant N rate (Table 2).

This led to three-best and four-best variable models, respec-

tively. Average temperature for September and December was

first added to the two-variable model to form the best three-

variable model followed by total rainfall to make the four-

variable model (Table 2). Compared to the best two-variable

model with INSEY and pre-plant N rate as the predictors,

three- and four-variable models reduced RMSE from 0.61 to

0.57 and 0.54 Mg ha−1, respectively (Table 2). The propor-

tion of variance in yield that was explained also increased

from 72.9 to 75.8 and 78.5%, respectively (Table 2). Rainfall

and temperature from September to December are possibly

important for the germination and early development of win-

ter wheat crop plants. Cold hardiness tends to be completed in

December (Yoshida et al., 1998), suggesting that temperature

received during that period may be important for winter sur-

vival of wheat. Winter wheat needs vernalization that can only

occur at low temperatures during winter to allow the reproduc-

tive phase particularly flowering to progress smoothly later in

the season (Dixon et al., 2019; Streck et al., 2003). Yet, global

temperature has been rising (Stewart et al., 2018) and appar-

ently this needs to be captured in the model for an accurate

yield prediction. Adequate soil moisture is also required for

proper establishment and development of winter wheat (He

et al., 2016). This likely initiates good seed germination and

emergence to achieve a uniform plant stand. In demonstrating

the importance of soil moisture, Stone and Schlegel (2006)

found soil water content at emergence to have a relationship

with grain yield that was as high as 70%. Under rainfed con-

ditions, rainfall is likely to be the only source for replenish-

ing soil moisture, potentially making it important for predict-

ing grain yield. Thus, grain yield prediction accuracy was

improved by including temperature and rainfall in the model.

As such, weather variables are factors that should be evaluated

in building models for yield prediction in different regions

(Colaço & Bramley, 2019).

Raun et al. (2019) pointed out that because of random-

ness in the environment, our ability to accurately predict grain

yield and make a recommendation for N will require using

more environment-specific variables in the model to account

for entropy or disorderliness in agricultural systems. In this

study, including pre-plant N rate, rainfall, and temperature in

the model appear to reduce this disorderliness in the system

and improve the ability to predict the final grain yield.

The best model (lowest RMSE) was further validated with

data from a neighboring experiment station in Hennessey,

OK. The proportion of variation in measured wheat grain

yield that was explained by the predictors that constituted

the full model was found to be 69.8% (Figure 3). When the

same data was used with the best one-variable model using

INSEY as the predictor, only 47.6% of the variability in yield

was explained (Figure 4). This is an illustration of the lim-

itation of using INSEY as a single independent variable for

predicting winter wheat grain yield. The full model explained
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F I G U R E 3 The relationship between predicted and observed

grain yield generated using an independent data set from Hennessey

experiment station, OK. This was a result of prediction using a full

model (Yield = −4.8 + 202.0 × INSEY + 0.014 × N rate + 0.0041 ×
Rain + 0.31 × Temp). INSEY, in-season estimated yield; N rate,

amount of nitrogen applied pre-plant; Rain, total rainfall from

September to December; Temp, average air temperature from

September to December

F I G U R E 4 The relationship between predicted and observed

grain yield generated using an independent data set from Hennessey

experiment station, OK. This was a result of prediction using the best

one-variable model (Yield = −0.46 + 309.7 × INSEY). INSEY,

in-season estimated yield

much of the variation in grain yield at Hennessey, OK, and

exceeded that explained in work done by Bushong et al. (2016)

by approximately 20.8% when they included only INSEY and

soil moisture in the model. The full model also produced

results that were much higher than the yield goal approach

that was found to explain no more than 16% of the variation in

wheat grain yield (Raun et al., 2017). The improved yield pre-

diction accuracy over the model using INSEY alone increases

the likelihood that an accurate quantity of N may be estimated

to match crop N needs. Nonetheless, these results are a fur-

ther exemplification that including INSEY in a model may be

superior to the yield goal approach for yield prediction even

if it is the sole predictor. While LASSO generated a well val-

idated model by splitting the data set into training and test

sets, applying the full model to this additional data from Hen-

nessey, OK, to predict the final grain yield provided further

evidence that the model might serve the intended purpose in

the real world.

Once the best model has been selected and used to predict

grain yield (YP0) mid-season, Raun et al. (2005) detailed the

steps to follow in order to make a recommendation for N. In

brief, response index (RI) is first computed to determine if

crops will respond to fertilizer N using Equation 3:

RI =
NDVINRS

NDVIFP

(3)

where NDVINRS, normalized difference vegetation index

value from a non-limiting nitrogen plot (nitrogen-rich strip);

NDVIFP, normalized difference vegetation index value from

a plot with less or no nitrogen applied (farmer practice).

This is followed by estimating the grain yield that would be

obtained if nitrogen is applied (YPN) using Equation 4 below:

YPN = YP0 × RI (4)

Finally, nitrogen rate (NR) is computed as indicated in

Equation 5:

NR = GN

(
YPN − YP0

η

)
(5)

where GN, wheat grain nitrogen concentration (%), a value

that can be obtained by analyzing the grain in the laboratory.

The GN for wheat was also assumed to be 2.13% in a world-

wide computation of NUE for cereal crops (Raun & Johnson,

1999); η, efficiency factor which is assumed to be as high as

70% when N is applied mid-season.

4 CONCLUSION

The accuracy with which winter wheat grain yield was pre-

dicted improved by including pre-plant N rate, total rainfall,

and average temperature from September to December in a

model that already had INSEY as a predictor. In-season esti-

mated yield resulted in the best one-variable model but had

the highest RMSE of 0.72 Mg ha−1. The full model selected
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by the model selection algorithm reduced this RMSE value

to 0.54 Mg ha−1. Nearly, 80% of the variation in wheat grain

yield was explained by using a full model when compared to

62% achieved with INSEY as the only independent variable

for yield prediction.

This is an indication that relying on INSEY as a sole pre-

dictor for grain YP may be bettered by a model that includes

both INSEY and weather variables. This also means that the

mid-season N management decision is likely to be based on

a more accurate estimate of winter wheat grain yield. Since

weather variables can easily be obtained from a vast network

of local and national weather stations, including them in the

model for yield prediction could assist producers in making

more informed decisions as to when and how much N to apply.
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