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Abstract
Variable influence of the environment on early-season plant growth leads to simi-

larly variable yield levels from year to year. This study was conducted to determine

the ideal point in the growing season when normalized difference vegetation index

(NDVI) sensor readings were highly correlated with grain yield. For each site-year,

NDVI readings were collected at least seven times from December through April.

Readings were collected from two long-term experiments where an N response was

expected in plots that historically received different N rates. The number of days from

planting to sensing where growing degree days (GDD) were more than 0 (GDD > 0)

was tabulated by site-year for all dates when NDVI data were collected. The r2 was

computed for NDVI versus final grain yield at all sensing dates and plotted against

the respective GDD > 0 when readings were taken. Linear plateau models were used

to determine the point when the r2 peaked. Averaged over 3 yr (2016–2018), the opti-

mum GDD > 0 needed to predict grain yield using NDVI in both long-term trials was

between 97 and 112. Use of the GDD > 0 as a numeric metric to delineate the best

time and date to collect NDVI readings and predict yield potential can then be used

to formulate accurate midseason fertilizer N rates. Adhering to quantitative GDD > 0

data is much more reliable than using subjective morphological scales. These criti-

cal GDD values can be reported on a day-to-day, by-location basis (mesonet.org) for

in-season producer use.

1 INTRODUCTION

Understanding how the weather might affect grain yield in a

timely manner to make mid-season decisions based on that

specific growing environment is lacking. With the advent of

day-to-day county and within-county weather information,

including rainfall, temperature, and composite growth statis-

tics, encumbering this information within mid-season algo-

Abbreviations: GDD, growing degree days; NDVI, normalized difference

vegetation index; RI, response index.
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rithms for water, fertilizer, and pesticide application is now

possible (Girma, Mack, Taylor, Solie, & Raun, 2007; Lorite,

Ramírez-Cuesta, Cruz-Blanco, & Santos, 2015).

Work by Bannayan, Crout, and Hoogenboom (2003) with

the CERES model showed that using stochastically generated

weather data could substitute for measured data. This then

provides a reliable forecast for wheat (Triticum aestivum L.)

grain yield, which starts in June and continues until the end

of the season for conditions in the United Kingdom.

In crop nutrient management, a commonly used vegetative

index is the normalized difference vegetation index (NDVI)

(Piedallu et al., 2019). Where NDVI is calculated based on

reflectance of red and near-infrared spectral bands (Tucker,
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T A B L E 1 Experimental data included in the analysis, year established, annual average rainfall, and range in annual rainfall

Experiment
Longitude,
latitude

Year
started

Annual average Rainfall
(1994–2018)
mm

Range
(1994–2018) 2016 2017 2018

Mean annual
temperature
◦C

222 36◦ 7′ 7″, N

97◦ 5′ 30″ W

1969 922 606–1493 784 1095 937 15.0

502 36◦ 23′ 13″ N,

98◦ 6′ 29″ W

1970 771 503–1314 716 849 854 15.6

Townshend, & Goff, 1985). Furthermore, NDVI obtained

using optical sensors is used to estimate chlorophyll content,

crop N content, biomass, and yield (Hatfield, Gitelson, Schep-

ers, & Walthall, 2008; Solie, Raun, Whitney, Stone, & Ringer,

1996; Stone et al., 1996).

Studies conducted by Raun et al. (2001) recognized that

mid-season wheat grain yield potential could be predicted

by including growing degree days (GDD) combined with

NDVI readings. Related work by Russelle, Wilhelm, Olson,

and Power (1984) showed that using GDD, rather than days,

as the divisor led to the recognition of physiological dif-

ferences, previously masked by normal crop response to

temperature.

For this study, the number of days was determined from

planting to sensing, where GDD was computed as (Tmin +
Tmax)/2 – 4.4◦C. The 4.4◦C threshold is commonly used for

winter wheat Oklahoma Mesonet (2018) and is a metric that

conveys a benchmark for growth. This followed work demon-

strating that NDVI readings alone were useful for predicting

dry and/or wet plant biomass (Stone et al., 1996).

Similar work by Freeman, Girma, Mullen, Teal, and Raun

(2007) showed that NDVI sensor readings, combined with

mid-season estimates of plant height in maize, could be used

to predict grain yields. Both the wheat and maize research tar-

geted growth rate by encumbering either days from planting

to sensing and/or plant height measurements.

Related work by Dhital and Raun (2016) reported a wide

range in optimum maize N rates for 213 site-years of data,

suggesting the need to adjust N rates by year and location.

Adjusting N rates by year and location would be facilitated

by having refined, time-sensitive indices for mid-season yield

prediction and by tailoring those readings to the times when N

use efficiency was optimized. This work was considered to be

prudent considering that N use efficiency has been problem-

atic, averaging 33% for many cereal crop production systems

and environments (Raun & Johnson, 1999).

Stone et al. (1996) used two NDVI readings and GDD

accumulated between the two readings to refine yield esti-

mates. Nonetheless, they did not recognize the value of GDD

accumulated from planting date to sensing date. Over time,

this group realized the importance of climatological inputs

in addition to NDVI, which could then be combined with

other years and locations, thus facilitating regional equation

T A B L E 2 Soil test parameters and test levels present in selected

treatments for Experiment 222 and Experiment 502 from samples

collected prior to planting in 2016

P K Organic C Total NExperi-
ment

Treat-
ment mg kg−1 pH g kg−1

222 0–0–0 8.44 45.21 5.52 8.37 0.97

0–60–40 8.48 21.71 5.42 8.63 1.00

80–60–40 12.59 48.22 5.19 8.91 1.05

502 0–0–0 8.48 21.71 6.24 8.33 0.93

0–40–60 5.81 34.79 6.24 8.53 0.89

80–40–60 10.88 39.47 5.59 8.45 0.94

development for predicting yield (Lukina et al., 2001). Yield

potential (YP0) estimates were calculated by dividing the

NDVI reading by the number of days from planting to sensing

when GDD > 0. Lukina et al. (2001) and Raun et al. (2001)

later advanced this in-season estimate of yield. The objective

of this work was to look further into the use of GDD and to

identify ranges in cumulative GDD that could more accurately

delineate those periods when winter wheat grain yield could

be predicted.

2 MATERIALS AND METHODS

Two long-term trials were selected for comprehensive NDVI

sensor readings over the active winter wheat growing cycle

in 2016, 2017, and 2018. Site and climate information for

Experiment 222 and Experiment 502 are outlined in Table 1.

Additional soil test data are reported for specific treatments in

Table 2. Both trials used a randomized complete block exper-

imental design with four replications. Soil samples (0–15 cm,

15 cores per plot) were collected prior to planting. A soil sub-

sample was taken from each treatment, dried at 75˚C, and

ground to pass a 240-mesh screen, and total N was determined

using a LECO Truspec CN dry combustion analyzer (Schep-

ers, Francis, & Thompson, 1989). The Mehlich III extractant

(Bond, Maguire, & Havlin, 2006) was used to determine soil

test values for P and K. These values and added site data are

reported in Tables 2, 3 and 4; these tables also report the treat-

ment structure for Experiments 222 and 502.
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T A B L E 3 Treatment structure for Experiment 222, Stillwater,

OK

Preplant N ratea Preplant P rateb Preplant K ratec

Treatment kg N ha−1 kg P ha−1 kg K ha−1

1
d

0 30 37

2
d

45 30 37

3
d

90 30 37

4
d

135e 30 37

5 90 0 37

6 90 15 37

7 90 45 37

8 90 30 0

9 90 30 74

10
d

0 0 0

11 135
e

45 74

12 135
e

45 0

13 90 30 37 (Sul-Po-Mag)

aNitrogen applied as 46–0–0 (urea).
bPhosphorus applied as 0–46–0 (triple super phosphate).
cPotassium applied as 0–0–60 (potash).
dYield potential plot.
eSplit 135 kg N rates to 67.5 kg N (fall) and 67.5 kg N (spring).

T A B L E 4 Treatment structure for Experiment 502, Lahoma, OK

Preplant N ratea Preplant P rateb Preplant K ratec

Treatment kg N ha−1 kg P ha−1 kg K ha−1

1
d

0 0 0

2
d

0 20 56

3
d

22.5 20 56

4
d

45 20 56

5
d

67.5 20 56

6
d

90 20 56

7
d

112.5 20 56

8 67.5 0 56

9 67.5 10 56

10 67.5 30 56

11 67.5 40 56

12 67.5 30 0

13 112.5 40 56

14 67.5 20 56 (Sul-Po-Mag)

aNitrogen applied as 46–0–0 (urea).
bPhosphorus applied as 0–46–0 (triple super phosphate).
cPotassium applied as 0–0–60 (potash).
dYield potential plot.

Over the course of the 2016 winter wheat growing sea-

son, 10 and 11 NDVI sensor readings were collected for

Experiment 222 and Experiment 502, respectively. For the

2017 growing season, seven readings were collected at both

sites. In 2018, 18 and 23 readings were taken from Experi-

ments 222 and 502, respectively.

For both sites and all years, readings began at or near the

Feekes 2 physiological growth stage (Large, 1954) and ended

at or near Feekes 11. Dates for preplant fertilizer applica-

tions, planting, top-dress applications, and grain harvest for

Experiment 222 and Experiment 502 for the years 2016, 2017,

and 2018 cropping seasons are reported in Table 5. Sensor

NDVI data were collected over a wide range of GDD > 0 for

both sites and all for 3 yr. For Experiment 222, these ranges

were 64–137 (2016), 90–149 (2017), and 17–126 (2018). For

Experiment 502, ranges in GDD > 0 when sensor readings

were taken were 48–127 (2016), 78–143 (2017), and 43–135

(2018).

Grain yield was recorded, and analysis for total grain N

was completed for each plot at both sites. For each sens-

ing event and location, GDD > 1 were retrieved from the

Mesonet Wheat Growth Day Counter (Mesonet, 2018). The

GreenSeeker NDVI active sensor (Trimble) was used to col-

lect sensor data at a rate of 70 readings m−2 when walking

at a speed of 5 km h−1 and held 70 cm above the wheat

canopy. Since the beginning of the use of the GreenSeeker for

yield prediction, more than four readings per season and/or

site had not been accomplished. This analysis encumbered a

much higher frequency of readings over the season. It was thus

assumed that a larger and more robust NDVI dataset could

deliver more accurate information for modeling growth and

resultant grain yields.

The r2 for each NDVI/yield relationship was plotted as a

function of corresponding GDD > 0. A linear-plateau model

was then fit to this relationship to determine if a viable

joint and/or intersection existed (SAS Institute, 2011). This

would be apparent if an increase in GDD > 0 no longer

resulted in the improvement of the r2 value (Nelson, Voss, &

Pesek, 1985). Furthermore, it was anticipated that a “plateau”

could be established and where improved correlation was no

longer attainable or where the r2 values (NDVI versus yield)

no longer increased. This intersection (linear transition to a

plateau, using GDD > 0) would, in theory, be the ideal point

in a given season when predicting wheat grain yield using

NDVI was maximized (i.e., the point where the correlation

between NDVI and wheat grain yield was maximized). This

applied linear-plateau model programmed in SAS (2011) was

first defined and advanced at North Carolina State University

(Anderson & Nelson, 1975; Cate & Nelson, 1971).

The current algorithm for dryland winter wheat, obtained

from Oklahoma State University (2018), was used to predict

yield potential (YP0).

YP0 = 1711∗e(INSEY
∗137.2) (1)

where in-season estimate of yield (INSEY) is calculated

by dividing sequential NDVI by the number of cumulative

GDD. This algorithm was developed using the methodology

described by Raun et al. (2005). Furthermore, the relationship
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T A B L E 5 Dates for preplant applications, planting, top-dress applications, and grain harvest for Experiment 222 and Experiment 502; 2016,

2017, and 2018 cropping seasons

Experiment 222 Experiment 502
2016 2017 2018 2016 2017 2018

Preplant 24 Sept. 2015 29 Sept. 2016 21 Sept. 2017 24 Sept. 2015 13 Oct. 2016 22 Sept. 2017

Plant 12 Oct. 2015 21 Oct. 2016 20 Oct. 2017 20 Oct. 2015 18 Oct. 2016 13 Oct. 2017

Top-dress 1 Mar. 2016 24 Feb. 2017 12 Mar. 2018 NA
a

NA NA

Harvest 9 June 2016 1 June 2017 14 June 2018 11 June 2016 13 June 2017 6 June 2018

aNot available.

T A B L E 6 Linear-plateau models that delineate the optimum growing degree days (GDD) > 0 for predicting wheat grain yield using in-season

normalized difference vegetative index sensor data

Experimenta Season Equation r2

222 2016, 2017 y = 0.0183x − 1.2148, x < 112y = 0.822, x > 112 0.93

502 2016, 2017 y = 0.0192x − 0.947, x < 97y = 0.9196, x > 97 0.96

Note. Joints listed for days where growing degree days > 0 are in theory the ideal climatologically identifiable point in a given season, where predicting wheat grain yield

using normalized difference vegetative index was maximized.
aExperiment 222 and Experiment 502 including the cropping seasons for 2016 and 2017.

between predicted and actual grain yield using sequential

NDVI readings over the entire growing season was explored

for each site-year. In addition, the response index (RI) for

each treatment at each respective GDD was adjusted using

the following equation (http://www.nue.okstate.edu/Yield_

Potential.htm):

RI = 1.69∗ (RI − NDVI) − 0.70 (2)

Equation (2) is currently used for making on-line N recom-

mendations.

The value for RI-NDVI was calculated by dividing the

NDVI of the treatment receiving the highest N rate by the

NDVI in the zero-N check plot for each trial and year. The

RI predicts the crop response to additional applied N. This

value varies spatially and temporally and is further described

by Johnson and Raun (2003) and Raun et al. (2005). This RI

was plotted over the entire season for each site-year

Moreover, YP0 and RI were used to calculate yield with

added fertilizer N (YPN) using the following equation:

YPN = YP0∗RI (3)

These were further used to calculate N required using the fol-

lowing equation:

𝑅 = 23.9∗
YPN − YP0

η
(4)

where R is the N application rate (kg ha−1), 23.9 is the per-

centage of N by weight present in wheat grain multiplied by

a conversion factor, and η is a fertilizer use efficiency factor

(0.5 ≤ η ≤ 0.7). The calculated N rate was also plotted over

the entire season for each site-year.

A detailed description of all these variables, equations, cal-

culation, and methodology are noted in Raun et al. (2001,

2002, 2005).

3 RESULTS AND DISCUSSION

The linear-plateau relationship between recorded GDD > 0

for each data collection time where the r2 for the NDVI and

yield were determined is reported in Table 6 for all site-years.

The joint or beginning of the plateau was the point where an

increase in the total number of days where GDD > 0 no longer

resulted in improved correlation or a higher r2 value. In the-

ory, collecting NDVI data at or near to this point would be

ideal.

For the 2016 and 2017 data included, this work showed

that having approximately 97 and 112 days when GDD > 0

was ideal (Experiment 502 and Experiment 222) in terms of

a defined in-season–specific point in time when NDVI read-

ings should be collected (Figures 1 and 2; Table 6). The cor-

responding Feekes growth stages for this GDD range was

Feekes 4 and Feekes 5, which are appropriate for top-dress

N application. A robust amount of data was collected in 2018

at both sites, but this information was not used. At both sites,

stand establishment was poor, and although winter wheat can

often compensate for poor stands, this did not occur at either

2018 site, resulting in nonusable data.

This in-season–specific point in time (GDD > 0 between 97

and 112) would also be the best time to make in-season N fer-

tilizer rate recommendations. Even though including different

locations (Stillwater and Lahoma) and multiple years (2015–

2016, 2016–2017, 2017–2018) where seasonal temperature

and cumulative rainfall varied, the optimum GDD > 0 needed
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F I G U R E 1 Correlation of normalized difference vegetation index versus winter wheat grain yield, for readings collected over the season

where the number of days from planting to sensing (growing degree days more than 0 [GDD > 0]) ranged from 64 to 149. Growing degree days was

calculated as (Tmin + Tmax)/2 – 4.4◦C. Data are for Experiment 222, Stillwater, OK, 2016 and 2017. Data not used for 2018 are represented by

black dots

F I G U R E 2 Correlation of normalized difference vegetation index versus winter wheat grain yield for readings collected over the season where

the number of days from planting to sensing (growing degree days more than 0 [GDD > 0]) ranged from 48 to 143. Growing degree days was

calculated as (Tmin + Tmax)/2 – 4.4◦C. Data are for Experiment 502, Lahoma, OK, 2016 and 2017. Data not used for 2018 are represented by black

dots

where NDVI and grain yield was highly correlated generally

fell within the range of 90 and 120 d.

Plotting predicted yield over the entire season showed

that at the beginning of the season (before reaching 90

GDD), the algorithm [Eq. (1)] overpredicts final grain

yield. Furthermore, the reduced r2 between actual and

predicted yield before 100 GDD was encountered across all

site-years in both trials (Figures 3a, 4a, 5a, 6a, 7a, and 8a).

The prediction of YP0 is the first and most critical step for

calculating sensor-based, site-specific nutrient applications

(Bushong, Mullock, Arnall, & Raun, 2018; Bushong et al.,

2016; Tagarakis & Ketterings, 2017). The time at which

sensor-based NDVI data are collected affects the accuracy of

yield predictions and final N recommendations (Raun et al.,

2005; Tagarakis and Ketterings, 2007).

The use of a harvest RI to estimate the response to applied

N was first discussed by Johnson and Raun (2003). Mullen

et al. (2003) disclosed that RI could be predicted by using



6 DHILLON ET AL.

F I G U R E 3 (a) Predicted yield potential (YP0, Mg ha−1) using sequential normalized difference vegetative index (NDVI) sensor readings

coming from a range of pre-plant N treatments and the corresponding r2 over the entire growing season. (b) Response index (NDVI in the non-N

limiting plot divided by the NDVI of each treatment). (c) Recommended N application rate (kg ha−1), indexed using the sum of growing degree days

(growing degree days more than 0 [GDD > 0]), where days were summed when (Tmin + Tmax)/2 – 4.4◦C > 0). Data are from Experiment 222,

Stillwater, OK, 2016

mid-season, sensor-based NDVI measurements. The RI

[Equation (2)], when plotted over the entire season, revealed

that before 90 GDD there would not be any benefit to addi-

tional N (Figures 3b, 4b, 5b, 6b, 7b, and 8b). This means that

NDVI values collected before 90 GDD would not be valuable

or needed for recommending N. The practical significance of

this is that less than optimal rates of N will be advised before

90 GDD, reducing the achievable final yield. This can further

be seen from recommended N rates [Eq. (3)] over the differ-

ent sites and years for both experiments (Figures 3c, 4c, 5c,

6c, 7c, and 8c). Additional N is recommended after 90 GDD,

and the wider distribution of the boxplot indicates different
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F I G U R E 4 (a) Predicted yield potential (YP0, Mg ha−1) using sequential normalized difference vegetative index (NDVI) sensor readings

coming from a range of preplant N treatments and the corresponding r2 over the entire growing season. (b) Response index (NDVI in the non-N

limiting plot divided by the NDVI of each treatment). (c) Recommended N application rate (kg ha−1), indexed using the sum of growing degree days

(growing degree days more than 0 [GDD > 0]), where days were summed when (Tmin + Tmax)/2 – 4.4◦C > 0). Data are from Experiment 222,

Stillwater, OK, 2017

N rate recommendations for different treatments. However,

the spread of whiskers of these boxplots is to be expected

because treatments received different preplant N rates

(Tables 3 and 4), resulting in the recommendation of different

N rates.

Relying on highly subjective morphological scales to deter-

mine the optimum time of day for sensing is and will continue

to be cumbersome. Instead, having a metric that was a product

of an existing and currently active environment will encom-

pass a more refined within-season–specific method. This
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F I G U R E 5 (a) Predicted yield potential (YP0, Mg ha−1) using sequential normalized difference vegetative index (NDVI) sensor readings

coming from a range of preplant N treatments and the corresponding r2 over the entire growing season. (b) Response index (NDVI in the non-N

limiting plot divided by the NDVI of each treatment). (c) Recommended N application rate (kg ha−1), indexed using the sum of growing degree days

(growing degree days more than 0 [GDD > 0]), where days were summed when (Tmin + Tmax)/2 – 4.4◦C > 0). Data are fom Experiment 222,

Stillwater, OK, 2018

would in turn represent the exact environment that had been

encountered for that specific year and, more importantly, for

that particular site. This would also deliver an environment-

specific N rate specifically tailored for each producer. Further-

more, such a methodology would remove the doubt and com-

plexity of subjective morphological scales, which are known

to vary by individual.

Had the boundary for using GDD > 0 as a numeric metric

to define an optimum time for collecting sensor readings

not been so clear, it would push this work back into a
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F I G U R E 6 (a) Predicted yield potential (YP0, Mg ha−1) using sequential normalized difference vegetative index (NDVI) sensor readings

coming from a range of preplant N treatments and the corresponding r2 over the entire growing season. (b) Response index (NDVI in the non-N

limiting plot divided by the NDVI of each treatment). (c) Recommended N application rate (kg ha−1), indexed using the sum of growing degree days

(growing degree days more than 0 [GDD > 0]), where days were summed when (Tmin + Tmax)/2 – 4.4◦C > 0). Data are from Experiment 502,

Lahoma, OK, 2016

morphological scale. However, the data over two different

sites and three different years delivered highly consistent

results in terms of defining how many days from planting to

sensing where GDD > 0 were needed to reliably predict yield

or yield potential.

Relying on a Feekes scale is not in itself a problem because

this morphological scale has been incredibly useful. Instead,

this work is a historical reminder that science, explicitly

embedding climatological data within our yield prediction

models, has delivered the clarity that was not previously

present.

In general, it is not recommended that sites and/or years

be combined due to the environmental differences that can

change drastically and affect yield results (Raun et al., 2017).
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F I G U R E 7 (a) Predicted yield potential (YP0, Mg ha−1) using sequential normalized difference vegetative index (NDVI) sensor readings

coming from a range of preplant N treatments and the corresponding r2 over the entire growing season. (b) Response index (NDVI in the non-N

limiting plot divided by the NDVI of each treatment). (c) Recommended N application rate (kg ha−1) indexed using the sum of growing degree days

(growing degree days more than 0 [GDD > 0]), where days were summed when (Tmin + Tmax)/2 – 4.4◦C > 0). Data are from Experiment 502,

Lahoma, OK, 2017

In their previous work included 83 site years, coming from

two long-term experiments, and showed that combining any

two or three consecutive year periods was not advisable

because the criterion for combining locations (e.g., homo-

geneity of error variance) over any two or three consecu-

tive years had not been met (Raun et al., 2017). This present

work represents the challenge of identifying a climatological

boundary where yield or yield potential could be predicted



DHILLON ET AL. 11

F I G U R E 8 (a) Predicted yield potential (YP0, Mg ha−1) using sequential normalized difference vegetative index (NDVI) sensor readings

coming from a range of preplant N treatments and the corresponding r2 over the entire growing season. (b) Response index (NDVI in the non-N

limiting plot divided by the NDVI of each treatment). (c) Recommended N application rate (kg ha−1) indexed using the sum of growing degree days

(growing degree days more than 0 [GDD > 0]), where days were summed when (Tmin + Tmax)/2 – 4.4◦C > 0). Data are from Experiment 502,

Lahoma, OK, 2018

and subsequently used to prescribe accurate mid-season fer-

tilizer N rates based on using the yield potential parameter

(Raun et al., 2005). For the 2018 cropping season and for

both Experiment 222 and Experiment 502, no definite range

in GDD > 0 could be established in terms of having improved

correlation. There was a trend for very limited correlation up

until 70 GDD > 0, which increased beyond that point (black

circles in Figure 1 and 2). For an array of biological and
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agronomic reasons, including early-season moisture stress,

plant biomass readings using NDVI were unreliable in 2018

at both locations.

4 CONCLUSIONS

The year-to-year and site-to-site environmental variability

that is present in agricultural fields leads to variable yield lev-

els. This work identified definitive ranges within the growing

season where NDVI sensor readings could be used to predict

grain yield. Linear plateau models were used to determine

the climatological period when the r2 values (NDVI versus

yield) peaked. Averaged over 3 yr and two sites, the opti-

mum GDD > 0 needed to accurately predict yield potential

was between 97 and 112. Using GDD > 0 as a numeric met-

ric to delineate the best time and date to collect NDVI read-

ings can then be used to prescribe mid-season fertilizer rates

using established algorithms. Having numeric limits that sur-

round in-season, GDD > 0 data are of value and may elimi-

nate the use of highly subjective morphological scales. Crit-

ical GDD > 0 values from the Oklahoma Mesonet can then

be accessed on a day-to-day, by-location basis for in-season

producer use.
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