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Abstract Identifying corn plant location and/or spacing is important for predicting yield

potential and making decisions for in-season nitrogen application rate. In this study, an

automatic corn stalk identification system based on a laser line-scan technique was

developed to measure stalk locations during corn mid-growth stages. A laser line-scan

technique is advantageous in this application because the line-scan data sets taken from

various points of view of a plant stalk results in less interference and higher probability of

plant recognition. Data were collected for two 10-meter-long corn rows at the growth

stages of V8 and V10 using a mobile test platform in 2011. Each potential stalk cluster was

identified in a scan and registered with the same stalks in previous scans. The final location

of a stalk was the average of the measured locations in all scans. The current system setup

with data processing algorithms achieved 24.0 and 10.0 % of mean total errors in plant

counting at the V8 and V10 growth stages, respectively. The root-mean-squared error

(RMSE) between system measured plant locations and manually measured ones were 2.3

and 2.6 cm at the V8 and V10 growth stages, respectively. The interplant spacing mea-

sured by the developed system had a good correlation with the manual measurement with

an R2 of 0.962 and 0.951 for the V8 and V10 growth stages, respectively. This system can

be ultimately integrated in a variable-rate-spraying system to improve real-time, high

spatial resolution variable-rate nitrogen applications.
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Introduction

Nitrogen use efficiency (NUE) in cereal production worldwide is as low as 33 % (Raun and

Johnson 1999). Much of the nitrogen (N) fertilizer applied to crops is lost to surface runoff

and leaching. This results in environmental damage such as the contamination of

groundwater supplies or eutrophication of surface waters.

Research on the approaches to reduce N losses has shown that the NUE decreases with

increasing N application level (Gauer et al. 1992) and nitrate leaching can be significant

when N is applied at rates in excess of that needed for maximum yield (Raun and Johnson

1995). These findings have motivated research and adoption of variable-rate N applications

where N is applied during the growing season rather than being applied at a fixed rate prior

to planting (Sowers et al. 1994).

It is critical to determine an optimal spatial scale for variable rate N application for in-

field variability management. For corn production, Martin et al. (2005) evaluated by-plant

corn yield variability based on the data collected in the USA, Argentina and Mexico from

2002 to 2004. The by-plant corn yield was calculated in the unit of kg/ha by assuming the

grain yield of a plant was the average grain yield in an area of one hectare. The area

occupied by that plant was calculated as half the distance to and from its two nearest

neighbors multiplied by the row spacing. They reported an averaged standard deviation of

plant to plant grain yield at 2 765 kg/ha. They also found that variability was not signif-

icant if the yield was averaged along the row over a scale greater than 0.5 m. These results

indicated that high-resolution plant management protocols might have a significant impact

in corn production.

Parameters commonly considered when investigating variability management are soil

nutrient level, soil moisture, plant N content, plant population or spacing, plant height,

canopy coverage or volume and canopy density. In corn production, variability of plant N

content, plant population or spacing and plant height are often examined. Krall et al. (1977)

found that every 2.5 cm increase in the standard deviation of plant spacing would decrease

the yield by 210 kg/ha. Lauer and Rankin (2004) found that when the standard deviation in

corn plant spacing was greater than 12.0 cm, relative grain yield reduced at 1.06 % with

every centimeter increase of the standard deviation in plant spacing. A corn by-plant yield

prediction model proposed by Martin et al. (2012) included plant height, plant spacing and

normalized difference vegetative index (NDVI) and achieved an R2 of 0.48. The previous

model without using plant height and spacing had an R2 of 0.22.

The research on plant population or interplant spacing measurement can be categorized

as two types: airborne and ground-based (Dworak et al. 2011). Most of the airborne remote

sensing approaches use hyperspectral or multispectral analysis to obtain large-scale data

(Huang et al. 2010; Thorp et al. 2008). Ground-based sensing methods have been used for

obtaining detailed crop and soil information. These can be done concurrently with other in-

field operations such as planting, spraying or harvesting. Ground-based approaches for

plant population or spacing measurements can be categorized as intrusive (mechanical

methods) or non-intrusive methods.

Mechanical methods to measure corn plant population usually use the resistant force of

stalks on a spring loaded arm or a gravity pendulum to count the number of stalks (Birrell

and Sudduth 1995; Heege et al. 2004). Some of these methods have already been com-

mercialized on combine harvesters. Non-intrusive methods are more suitable for sensing

corn population at early and mid-growth stages. Some of these methods are based on

capacitive sensing: Nichols (2000) invented a moisture detecting sensor installed on a

Precision Agric (2013) 14:478–494 479

123



combine head to count harvested stalks; Li et al. (2009) developed a capacitance biomass

proximity sensor to count corn stalks during harvesting.

Other non-intrusive methods in ground-based crop sensing are mainly based on optical

sensing technique including 2D color/gray-scale imaging and range sensing. Color imaging

has been explored in several studies for corn plant counting and spacing measurement in

the past few decades. Shrestha and Steward (2003, 2005) developed and tested a machine

vision based corn plant population sensing system. Algorithms were developed for color

image sequencing, segmentation and plant recognition in order to count corn plants and to

estimate plant location and spacing. The root-mean-square errors (RMSEs) in population

estimates were in the range of 5–6 % compared with manual counts. Tang and Tian

(2008a, b) developed a real-time crop row image reconstruction and plant identification

system for automatically measuring the spacing of emerged corn plants. They achieved an

overall RMSE of 1.7 cm and an R2 of 0.96. All of these studies targeted at early growth

stage corn plants prior to canopy closure.

Range sensing techniques are another category of optical-based sensing methods that

have been applied to crop parameter measurements. A photoelectric emitter and receiver

pair is a 1D range sensor. Hummel et al. (2002) developed and tested photoelectric sensors

installed on a combine corn head for plant diameter, spacing and population measurements.

They used an air-jet system to physically remove corn leaves and other debris from the

sensors’ field of view. The average normalized population and spacing estimates were

reported at 0.94 and 1.08, respectively. Luck et al. (2008) used an infra-red range sensor for

in-field plant population measurements and achieved an error in population estimates

between 0.7 and 4.4 %. They indicated that the main error source was the interference

from leaves. A laser line scanner is a 2D range sensor. Wangler et al. (1994) patented a

laser scanning sensor which could be attached on a sprayer to selectively spray according

to the presence of the tree foliage. A laser scanning technique was also used for tree foliage

density and wheat stand density estimation by calculating variation in laser penetration

depth (Wei and Salyani 2004, 2004; Saeys et al. 2009).

Up to recent, little research has been conducted so far on corn plant location mea-

surement in the mid-growth stages using 2D range sensing techniques. The objective of

this study was to develop a system using the laser line-scan technique for automatic corn

plant location measurements to facilitate in-season variable rate N applications. The spe-

cific objectives were to:

• Develop a data acquisition system based on laser line-scan techniques to obtain corn

plant location and spacing information;

• Develop data processing algorithms to estimate corn plant location and spacing; and

• Evaluate the system performance at the V8 and V10 growth stages.

Materials and methods

System setup and principles

The data acquisition platform was a four-wheel cart which moved easily between rows

(Fig. 1a). The key component of this system was a laser line scanner (LMS291, SICK AG,

Waldkirch, Germany) which measured distances between the sensor and target objects

based on the time-of-flight principle. It was configured to operate in continuous line scan

mode with a field of view of 100� and a resolution of 0.25�. The laser scanner was mounted
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on the cart’s front arm and aimed about 5-cm above the roots of the corn stalks with a

downward angle of 20�. The scan plane formed a 70� angle with the plane of the plant row

(Fig. 1c). This setup was selected to allow the sensing of stalks near the ground while

maintaining sufficient clearance between the sensor and ground.

Multiple neighboring stalks within a row were sensed in a scan as illustrated in Fig. 1b.

The number of stalks in a scan depended on the distance between the sensor and plant row,

as well as how far apart neighboring plants were. A control program developed in

(a) 

(b) 

(c) 

Laser Line ScannerDigital CameraWheel x 4 

Shaft Encoder

Cart 

Corn plants
Direction of travel

Row B

Row A

100

Fig. 1 Laser line-scan based corn plant location and spacing measuring system: (a) the cart with a laser line-
scan sensor and other data acquisition devices. (b) Top view and (c) side view showing system operation
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LabVIEW� (National Instruments Co., Austin, Texas, USA) was used to establish the

communication between a laptop computer and the laser scanner, to receive data packages,

to extract distance data and convert them from polar to Cartesian coordinates, and to save

the data into a file with MS Excel format. The laser scanner scanned 100� and collected

401 distance measurements in 53.28 ms. With an average 0.447 m/s moving speed of the

cart, the sensor moved about 2.4 cm within the time of a scan. This offset was ignored in

this study. A 500 kbps baud rate was configured with a RS-422 connection and a serial to

Ethernet convertor (DeviceMaster 500, Comtrol Co., New Brighton, Minnesota, USA)

between the laser scanner and the laptop to ensure a sufficient data transfer rate.

A shaft encoder was mounted on one of the rear wheels and connected to a data

acquisition card (USB 6008, National Instruments, TX) to obtain the location of each scan

relative to a fixed start point. Hence, the data of each laser scan was location-stamped with

a corresponding encoder reading. A video camera was mounted next to the laser line

scanner to record a video of each trial which could be used later to verify the measurements

of the laser line scanner.

Field experiment setup

The field experiment was conducted at Lake Carl Blackwell, near Stillwater, OK, in June

and July of 2011. Data were collected from two 10-m long rows, each containing 50 corn

plants, at the V8 and V10 growth stages. Three trials were conducted on each row at the V8

growth stage. Due to equipment malfunctions, only the data from two trials was used on

row 1 at the V10 growth stage. Figure 2 shows the field setup for the data acquisition

platform. The cart with the developed data acquisition platform was manually pushed

between corn rows. The horizontal distance between the sensor and the corn row varied

from 34 to 48 cm due to the deviation of the cart from the center line between rows. Since

Fig. 2 Illustration of the cart’s deviation between rows (not to scale): Case 1 (see P1) was when the cart
was the closest to plant row B and Case 2 (see P2) was when the cart was the furthest to plant row B.
Designations 1L and 2L indicated the positions of left wheel, and 1R and 2R indicated the positions of right
wheel in these two cases, respectively
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the laser scanner was mounted with a downward angle, when the cart travelled between the

rows, the actual distance reading of the central point of a laser scan was between 36 and

51 cm. The sensor was mounted at a height so that, with this travel distance, the sensing

plane on the plant stalks was between 2.5 and 7.6 cm above the plant roots. Manual

location measurements were taken for the 100 plants and used as ground truth.

Data processing algorithms

Figure 3 shows a flowchart of the main data processing algorithm for locating corn stalks.

Shaft encoder data of each scan were pre-processed so that it could be synchronized with

ground truth measurement. For each scan, after eliminating the soil background, potential

stalk clusters were classified and each was registered with corresponding stalk clusters

from previous scans if they were identified as the same plant. Except for the most recent

plant entering into the sensor’s field of view during movement, each cluster in the current

scan not corresponding to any of the clusters from previous scans were treated as noise.

The final location of each recognized plant was calculated as the mean of the position

measurements in all related scans. All data processing algorithms were developed in

MATLAB� (MathWorks Inc., Natick, Massachusetts, USA).

Fig. 3 Flowchart of the main
data processing algorithm for
locating corn stalks
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Synchronization of shaft encoder data and ground truth measurement

A pre-processing step was conducted on the shaft encoder data to synchronize it with

ground truth measurements so that the system could be evaluated. Shaft encoder readings

provided location of each laser scan. They were critical for in-row plant registration. The

quality of the shaft encoder readings depended on the rotation of the wheel to which the

encoder roller was attached. Intermittent rotation due to obstacles or uneven soil surface

was unavoidable in a field experiment and could reduce positional accuracy. To partially

correct for these deviations, encoder readings of each trial were stretched evenly along the

entire row so that they would have an equal total length in between the 1st and 50th plants.

Thresholding

Figure 4a shows a typical scan after conversion to Cartesian coordinates. The sensor (gray

square box) was at the origin of the local coordinates when this scan was taken. The

clusters within 36–51 cm of the vertical axis of the coordinates corresponded to plant

stalks. Other data points were the reflections from the soil background, leaves or other

interfering objects and considered as noise. A thresholding process was conducted to

eliminate noise data points that were not within the normal 36–51 cm range of the sensor

as the cart travelled down the row.

Clustering

A clustering algorithm was implemented to identify potential stalk clusters based on the

density variation of the line scan data. This algorithm was adapted from the density-based

spatial clustering of applications with noise (DBSCAN) described by Ester et al. 1996.

Three parameters must be pre-defined in this algorithm: e was the range in which a core

point searched for a neighbor point to form a cluster and was set as a specific value no less

than 0.85 cm according to the distance the core point was away from the origin; MinPts

was the minimum number of data points needed to identify a cluster and was set as five;

MaxPts was the maximum number of data points to be included in a cluster and was set as

25. These values were determined by trial and error in this study.

The value of radius e in which a core point searched for its neighbors was not the same

for every core point in the developed clustering algorithm. It varied based on the distance a

data point was away from the origin. This was necessary because the radially collected data

of the laser line scanner resulted in a higher density of data points near the scanner. The

section area of a laser beam at a data point was calculated based on the divergence angle of

the laser beam and the distance between that data point and the origin. The ratio of this

section area to the section area of a laser beam at 44-cm away from the origin (cart

centered between two rows) was obtained. It was used to multiply the minimum value of e
(which was 0.85 cm in this study) to be the specific e value for that data point. The

adjustable searching range e made the clustering more accurate.

The values of MinPts and MaxPts were selected by assuming that the stalk diameters

measured in this study would not be less than 1 cm or greater than 5 cm at both of the V8

and V10 growth stages. If the cart was moving along the center line between rows, a 5 cm

or a 1 cm object would form a 25-point cluster or a five-point cluster at the central point of

a laser scan when the sensing resolution was set as 0.25�. Hence, MinPts was set as five and

MaxPts was set as 25.
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The clustering algorithm included the following steps:

1. All points in a dataset were initially marked as unvisited. The algorithm randomly

started from one of the unvisited points p in the dataset and marked it as a visited

point.

2. Made p a core point and searched for neighboring points within a radius e. If no points

were found within that range, marked p as noise and went back to step 1; otherwise, a

new cluster was found consisting of p and its neighbors.

3. Each neighbor of the core point was assigned to the current cluster and was marked as

visited. Each of point in the cluster was then treated as a core point and a search was

conducted for its neighbors within a radius of e. For each of the neighbor points found,

step 3 was repeated until no new neighbors could be found.

4. Went back to step 1 until all points in the dataset had been visited.
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Fig. 4 Illustration of clustering
algorithm for stalk identification.
(a) Typical line scan data after
converting to Cartesian
coordinates. Circles indicate
reflectance data points; sensor
was located at the origin (0, 0).
(b) Clustering result of this scan:
1–5 were the identified clusters
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5. Checked the size of each cluster. Only those clusters that had a size larger than MinPts

and smaller than MaxPts were kept while others were treated as noise and eliminated.

The clustering algorithm developed in this study changed the criterion for identifying a

point as a core point in a cluster expansion. In the referred algorithm (DBSCAN) a point

was usually marked as a core point when it had more than three neighbors within a certain

range; otherwise, the point was marked as noise. This made it possible to initially mark

border points in a cluster as noise if the cluster had a narrow shape. Though DBSCAN

changed them to cluster points later, this was inefficient if most of the points in a cluster

were boarder points, which was the case when using a laser line scanner in plant stalk

profiling. In the developed clustering algorithm, a cluster expansion started from a core

point even if it had only one neighbor in a defined range.

Coordinate conversion

Two coordinate systems were involved in data processing—a local coordinate system and

a ground coordinate system. Data from each scan had unique local coordinates due to the

movement of the cart down the row. The origin of each local coordinate system was

located at the laser source inside the laser line scanner. The y-local axis of each of the local

coordinate system was along the midpoint of the sensor’s field of view and increased with

the distance away from the sensor; the x-local axis was perpendicular with y-local axis and

increased to the right of the sensor. The origin of ground coordinates was at the start of

each trial where the encoder reading was zero. The x-ground axis of the ground coordinates

was parallel to the direction of sensor’s travel; the y-ground axis was parallel to local

coordinate axis indicating the depth measurement. The local coordinates of a plant in a

scan were finally converted to the ground coordinates making use of the specific encoder

reading of that scan.

Scan registration/matching between scans

Multiple scans obtained for the same stalk from various points of view gave a better chance

to correctly recognize a plant. With the sensor’s configured field of view while traveling at

0.447 m/s during data acquisition, a stalk generally appeared in approximately 40 con-

tinuous scans. Although it might be interfered with or blocked by leaves and other debris in

some scans, a stalk still had a high possibility to be recognized in the rest of the scans. In

order to match clusters from multiple scans corresponding to the same plant stalk, a scan

registration procedure was implemented based on the difference of shaft encoder readings

between scans.

Figure 5 is an illustration of this scan registration process. Assume scan # j was a

current scan, scan # i was a previous scan, three clusters were shown in both scans, and the

difference between encoder readings of these two scans was d. The developed algorithm

used cluster locations in the current scan and d to calculate estimated cluster locations in

the previous scan. It then searched for corresponding clusters within a small buffered

search area around that estimated location for each cluster. The buffered search area was

set as ±6 cm in this study by trial and error. If multiple corresponding clusters were found

within that range for a cluster in the current scan, the one closest to the estimated location

in the previous scan was selected. The first scan was exempted from registration. The

clusters recognized in the first scan were assigned as plant stalks in incremental indices

starting from one.
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Registration started from the second scan and each scan could only register with the

previous scans in order to meet the requirement by a real-time processing system. For each

cluster in the current scan, the algorithm searched backward through up to thirty previous

scans to find a matching cluster. Once a matching cluster was found, the one in the current

scan was assigned to the same cluster index as the cluster in the previous scan; otherwise,

the cluster in the current scan was marked as not being matched. Finally, all the unmatched

clusters were checked to see if there was a cluster which newly entered into the sensor’s

field of view. If there was one, a new cluster index was assigned to it. At the end of the

process, all the unmatched clusters were marked as noise clusters.

The final location of a recognized plant stalk was the mean location of all clusters with

the same index in different scans. Estimated locations which were within 5 cm of each

other had a high likelihood of corresponding to a stalk and a sheath (Fig. 6). Sheath

interference was compensated for by averaging the locations of two estimated locations

less than 5-cm apart into one location.

Fig. 5 Illustration of the scan
registration algorithm

Fig. 6 Sheath interference with
stalk locations
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System performance evaluation

System performance was evaluated by comparing its measurements to ground truth data

which was measured manually by a ruler for each plant row. Errors in plant counting, plant

location estimate and interplant spacing estimate were analyzed.

Plant counting

Three errors were defined for evaluating system’s performance on plant counting: the false

negative counting error (FNEr) (Eq. 1), false positive counting error (FPEr) (Eq. 2), and

total counting error (TEr) (Eq. 3):

FNEr ¼ Missing count

Ground truth count
� 100 % ð1Þ

FNEr ¼ Adding count

Ground truth count
� 100 % ð2Þ

TEr ¼ FNEr� FPEr ð3Þ
If no plant was identified within ±10 cm from the ground truth location of an actual

plant, there was a false negative count for that actual plant. Similarly, if no actual plant was

located within ±10 cm of the location of an identified plant, this resulted in a false positive

count. Only the recognized plant closest to (and within ±10 cm) the location of an actual

plant was a valid count; multiple counts of an actual plant were treated as false positive

counts. The total counting error was equal to the sum of the false negative error and false

positive error. These errors were calculated for each of the two rows at each growth stage.

The SAS (SAS Institute, Cary, North Carolina, USA) General Linear Model procedure

(GLM) was used to test for significant differences in FNEr, FPEr and TEr between the V8

and V10 growth stages.

Plant location estimation

The RMSE was calculated between the manually measured ground truth locations and

those measured by the developed system for all correctly recognized plants in each row at

each growth stage. In this analysis, locations corresponding to false negative counts were

eliminated from ground truth locations in each trial while locations corresponding to false

positive counts were eliminated from system measured locations. The significant differ-

ence in plant location estimates between the V8 and V10 growth stages was also tested

using GLM procedure in SAS.

Plant spacing estimation

Another parameter to investigate plant location error was the error of interplant spacing

estimates. Interplant spacing was calculated as the difference between every recognized

plant pair in a row excluding false positive and false negative counts for each trial. The

spacing of the two plants at each side of a false negative count was eliminated from the

system measured spacing in order to correlate with the manually measured spacing. The

RMSE of estimated spacing of all identified plants was calculated for each row in each trial

and compared to manually measured spacing. If two successive plants were only correctly

recognized in one trial, their spacing was compared to ground truth data; if two successive
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plants were correctly recognized in different trials, the corresponding spacing measure-

ments were averaged before comparing to ground truth data.

Results and discussion

Plant counting error

At the V8 growth stage, an averaged 2.0 % (SD = 1.6 %) FNEr, an averaged 22.0 % FPEr

and an averaged 24.0 % (SD = 6.9 %) TEr were achieved. At the V10 growth stage, a

3.0 % (SD = 1.0 %) FNEr, a 7.0 % (SD = 3.0 %) FPEr, and a 10.0 % (SD = 4.0 %) TEr

were achieved (Table 1).

No significant difference was found in FNEr (F1,6 = 0.50, p = 0.51) and TEr

(F1,6 = 5.51, p = 0.057) between the V8 and V10 growth stages. While a significant

difference was found in FPEr between V8 and V10 growth stages (F1,6 = 7.61,

p = 0.033). At V8 growth stage, false positive errors were larger than false negative errors

for both rows; while at the V10 growth stage, false positive errors decreased and false

negative errors increased. The large false positive error at V8 growth stage was primarily

due to weed interference which prevented the system from differentiating weeds from

stalks (Fig. 7a). Row 2 had larger errors than row 1 at V8 growth stage. The recorded video

indicated more weed interference for row 2 than row 1 at that time. This suggested that the

system developed in this study should be used in a weed controlled plot. A higher sensing

height to avoid the weed area might help although interference from leaves on the stalk

could offset improvements. At the V10 growth stage, weeds had been treated with her-

bicide so false positive errors decreased; however, most of the lower leaves were dehy-

drated and laid over the stalk (Fig. 8). A leaf cluster often had a larger size ([25 data

points) than a stalk cluster. This was used by the algorithm to differentiate the leaf clusters

from the stalk clusters. Attached leaves prevented the sensor from seeing the actual shape

of the stalks resulting in more false negative errors. At the V8 growth stage, most of the

lower leaves were still vital and standing up.

The number of plants identified in each trial was used to assess the repeatability of

system estimates. At the V8 growth stage, 49 out of 50 plants (98.0 %) were identified in

all trials in row 1 though all 50 plants were identified in at least one trial; 46 plants out of

49 plants (93.9 %) were identified in all trials in row 2 excluding a plant located 3 cm apart

from one of its neighbors though the other 48 plants were identified in at least one trial. At

the V10 growth stage, 47 out of 50 plants (94.0 %) were identified in valid trials in row 1

though all 50 plants were identified in at least one trial.

Table 1 Errors of plant counting and stalk location estimates compared to ground truth data

FNEr (%) FPEr (%) TEr (%) RMSE of location
estimate (cm)

RMSE of spacing
estimate (cm)

Row 1, V8 1.3 (0.94)* 16.0 (1.6) 17.3 (0.94) 1.9 (0.2) 2.1 (0.3)

Row 2, V8 2.7 (1.9) 28.0 (2.8) 30.7 (2.5) 2.8 (0.3) 2.9 (0.8)

Row 1, V10 3.0 (1.0) 7.0 (3.0) 10.0 (4.0) 2.6 (0.2) 2.0 (0.1)

* Numbers in the parenthesis represent standard deviation

Precision Agric (2013) 14:478–494 489

123



Plant location and spacing error

The RMSEs of system measured plant locations were 2.3 cm (SD = 0.5 cm) and 2.6 cm

(SD = 0.2 cm) for the V8 and V10 growth stages, respectively, for those correctly iden-

tified stalks in each row at each growth stage. No significant difference was found in

RMSE of location estimate between the V8 and V10 growth stages (F1,6 = 0.29, p = 0.61)

which demonstrated the repeatability in location estimate at two different growth stages of

the system. This plant location estimate error was relatively small compared with the

20.2 cm (SD = 10.6 cm) interplant spacing which is discussed in the next section.

Factors contributing to errors in plant location estimates included errors from data

acquisition, data processing and sheath and leaf interference. Small diameter wheels on the

cart likely caused some inaccuracy at some locations due to the uneven terrain in the field.

The correction for encoder readings in data pre-processing distributed the encoder error

evenly to every scan in a trial. This problem would be reduced if the encoder was mounted

on a wheel with a larger contact area with the soil surface. Subjective error was induced in

the manual measurement of plant locations. In addition, corn plants were not perfectly

vertical during growth stages which caused inconsistency between manual and system

measurements.

Fig. 7 Weed interference at the V8 growth stage. (a) A stalk with weed interference in row 2.
(b) Corresponding laser line scan data

Fig. 8 Typical laid-over leaf interference at the V10 growth stage
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Interplant spacing estimated by the system was highly correlated to ground truth data.

Comparison between them at the V8 growth stage resulted in RMSE of 2.5 cm (SD = 0.8 cm),

an R2 of 0.962 and a slope of 0.975 with an intercept of 0.643 in the regression equation

(Fig. 9a). At the V10 growth stage, this comparison resulted in RMSE of 2.0 cm

(SD = 0.1 cm), an R2 of 0.951 and a slope of 0.995 with an intercept of 0.247 (Fig. 9b). The

slopes were close to one and the intercepts were close to zero in both regression equations.

Distribution of manually and system measured interplant spacing was also investigated.

Manually measured interplant spacing had a mean of 20.2 cm (SD = 10.6 cm); while

those measured by the developed system had a mean of 20.6 cm (SD = 11.0 cm) at the V8

growth stage (Fig. 10a). Manually measured interplant spacing had a mean of 19.6 cm

(SD = 8.5 cm); while those measured by the developed system had a mean of 19.8 cm

(SD = 8.6 cm) at the V10 growth stage (Fig. 10c). The similarity in the means and

standard deviations of the system measurements with the ground truth data demonstrated

the repeatability of the system developed in this study.

The errors of the system measured interplant spacing had means of 0.1 cm (SD = 1.9 cm)

and 0.1 cm (SD = 1.9 cm) at the V8 and V10 growth stages, respectively (Fig. 10b, d).

Shapiro–Wilk normality tests were conducted to test the normality of the error distributions at

the two growth stages. There was no significant evidence to reject the null hypothesis that they

were normally distributed (SWstatistic = 0.97, p = 0.82 for V8; SWstatistic = 0.99,

p = 0.34 for V10; a = 0.05) which demonstrated the reliability of the system measurements.

However, the slightly positive skewed shape in the error distribution plot of the V10 stage

(Fig. 10d) indicated that there was an error source. It was very likely associated with the pre-

processing procedure in data processing in which the encoder reading was stretched in order

to be synchronized with the ground truth data. The stretch ratio was larger in the V10 than that

in the V8 growth stage because the drought soil condition in the V10 growth stage caused

more missing encoder counts. This suggested an improvement on the data acquisition plat-

form with a better wheel encoder mechanism in the future.

Evaluation of overall system performance

The RMSEs of interplant spacing measurements were 2.5 cm (SD = 0.8 cm) at the V8

growth stage and 2.0 cm (SD = 0.1 cm) at the V10 growth stage. These results were at a

Fig. 9 Comparison between system measured interplant spacing and manually measured interplant spacing
(a) at the V8 growth stage (n = 96) and (b) at the V10 growth stage
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centimeter or a tenth of a centimeter level, which were smaller or close to the agronomic

spacing findings at a centimeter level described by Krall et al. (1977) and Lauer and

Rankin (2004). This indicated that the developed system could be used to provide useful

plant location and spacing information from an agronomic point of view.

In summary, the developed approach had its unique features comparing with others

from previous research. Firstly, it was suitable for sensing corn plant location and spacing

at mid-growth stage. Previous work based on 2D imaging and collected data from the top

of the canopy could only be applied at early corn growth stages. At the mid-growth stage,

the corn canopy might overlap with each other, thus made it difficult to differentiate

individual plant. Secondly, the developed approach could reduce interference from leaves

and other objects by scanning a plant multiple times. This greatly increased the possibility

to identify each plant and improved the accuracy on corn location and spacing measure-

ments when compared with 1D ranger sensors. Thirdly, the developed, laser-scanner-based

approach acquired less data for plant measurements; hence, led to faster processing and

communication speed and low demands on data processing and storage comparing with 2D

imaging methods. This was very important for real-time, field implementation.
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Fig. 10 Histograms of (a) manually and system measured interplant spacing, and (b) error distribution of
system measured interplant spaces at the V8 growth stage; (c) manually and system measured interplant
spacing and (d) error distribution of system measured interplant spaces at the V10 growth stage
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Conclusions

A system based on laser line-scan technique was developed and tested to estimate corn

plant locations and interplant spacing at mid growth stages. The field experiment results

demonstrated that:

• Using a laser line scanner to identify corn plant stalks from different points of view on-

the-go is a feasible method for plant counting, location and spacing measurement. The

current system achieved 24.0 and 10.0 % of mean total errors in plant counting at the

V8 and V10 growth stages, respectively. The mean RMSEs of the system measured

locations for correctly identified plants were 2.3 and 2.6 cm at the V8 and V10 growth

stages, respectively. Comparison between system measured and manually measured

interplant spacing had R2 of 0.962 and 0.951 for the V8 and V10 growth stages,

respectively.

• The system can be enhanced for better performance in the future. Redesign of the

wheel encoder mechanism will increase the reliability in data acquisition. Data

processing algorithm can also be modified on reducing errors from interfering factors

and fine-tuning parameter values.

• For practical deployment, the developed system can be upgraded by using a laser

scanner with a faster data communication rate and an on-board fast microprocessor-

based data-logging system to accommodate the travel speed of a tractor (e.g.

6–10 kmph).
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