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predicting in‑season maize (Zea 
mays L.) yield potential using crop 
sensors and climatological data
Jagmandeep Dhillon1*, Lawrence Aula2, Elizabeth Eickhoff2 & William Raun2

The environment randomly influences nitrogen (N) response, demand, and optimum N rates. Field 
experiments were conducted at Lake carl Blackwell (LcB) and efaw Agronomy Research Station (efaw) 
from 2015 to 2018 in Oklahoma, USA. Fourteen site years of data were used from two different trials, 
namely Regional corn (Regional) and optimum n rate (optimum n). three algorithms developed by 
Oklahoma State University (OSU) to predict yield potential were tested on both trials. Furthermore, 
three new models for predicting potential yield using optical crop sensors and climatological data 
were developed for maize in rain‑fed conditions. the models were trained/built using Regional and 
were then validated/tested on the optimum n trial. out of three models, one model was developed 
using all of the Regional trial (combined model), and the other two were prepared from each location 
LCB and Efaw model. Of the three current algorithms; one worked best at predicting final grain yield 
at LCB location only. The coefficient of determination  R2 = 0.15 and 0.16 between actual grain yield and 
predicted grain yield was observed for Regional and optimum n rate trials, respectively. the results 
further indicated that the new models were better at predicting final grain yield except for Efaw model 
 (R2 = 0.04) when tested on optimum N trial. Grain yield prediction for the combined model had an 
 R2 = 0.31. The best yield prediction was obtained at LCB with an  R2 = 0.52. Including climatological data 
significantly improved the ability to predict final grain yield along with using mid-season sensor data.

The three most yield-limiting nutrients in cereal crop production are N, phosphorus (P), and potassium (K). 
Globally, N consumption has increased eight  times1, P increased 3.52 and K consumption has increased three 
 times3, since the year 1961. Undoubtedly, N remains the most consumed nutrient worldwide.

A review in 1999 encompassing global N use and cereal crop production found that nitrogen use effi-
ciency (NUE) in cereal crops was 33%4. A lot of research has been devoted to improving NUE in crops grown 
 worldwide4–6. Lassaletta et al.5 noted that considering the present situation increasing N fertilization would not 
result in a yield increase. Alternatively, they suggested improvement of agronomic practices to be an efficient 
strategy. Raun and  Johnson4 proposed various approaches through which NUE could be improved, including 
site-specific N management.

Historically, yield goals have been used for estimating  preplant7 and in-season N  rates8. However, their 
adequacy has been refuted in winter  wheat9, and  maize10. Rodriguez et al.10 deduced data-intensive fertilizer 
management as a more efficient N management strategy. Crop optical sensing has been effectively used to identify 
N deficiency in the field and determine in-season N fertilizer  recommendation11–17.

The first and critical step for sensor-based site-specific nutrient management is in-season prediction of yield 
 potential3,8,17, for which an algorithm is  required18,19. The optical sensors use normalized difference vegetation 
indices (NDVI) from crop canopy reflectance of red and near-infrared wavebands to estimate chlorophyll con-
tent, crop N content, biomass, and yield  predictions16,20–22. To improve yield estimates, Raun et al.7 introduced 
an in-season estimate of yield (INSEY), using NDVI divided by growing degree days where yield was possible 
(GDD > 0) in winter wheat. Maize algorithms for determining N recommendations utilizes the measurement 
of the crop grain yield potential at the time of sensing along with a response index (RI), a ratio of N-rich NDVI 
compared to a deficient N  area23.

Numerous researchers have tried to improve the in-season estimate of yield by including other variables in 
conjunction with NDVI and GDD. Girma et al.24 combined chlorophyll content, plant height, and total N uptake 
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along with NDVI as good predictors of final wheat grain yield. Walsh et al.25 included soil moisture at 0.05 m 
depth with NDVI to accurately predict wheat grain yield. Bushong et al.8 assimilated NDVI, days of potential 
growth (based on temperature and soil moisture), and a stress index (amount of plant-available water divided by 
the amount of water required to maintain yield) to accurately predict in season wheat yield estimates. In maize, 
a combined model using plant height along with NDVI was used to successfully predict by-plant corn grain 
yields at the V8 growth  stage21,26. Sharma et al.15 included soil moisture in a polynomial model of yield prediction 
and concluded it to be better than exponential models. Machine learning (ML) offers another new possibility to 
predict N fertilizer recommendation in maize. The difference between ML and traditional statistics is the inclu-
sion of more variables in machine  learning27. Puntel et al.28 used soil depth, precipitation, heat stress, nitrate–N 
at planting, and residue amount, out of 54 variables used in the study, to predict economic optimum N rate.

Morris et al.13 found it difficult to accurately predict the amount of N needed by maize and inferred that 
current techniques are inadequate in N recommendations. In their review, they concluded that uncontrollable 
environmental factors and their interaction with other considerations such as N source, timing and placement, 
plant genetics, and soil characteristics need to be combined to make better N rate recommendations. Recently, 
Raun et al.29 suggested independent estimation of multiple random variables for mid-season algorithms due to 
erratic effect environment has on N demand and final grain yield.

The studied area in this work is in the Southern Great Plains (SGP). The SGP mainly comprises of Texas, 
Kansas, and Oklahoma, and this region frequently encounters periods of prolonged drought, erratic rainfall, 
and variable air  temperatures30. The variability that is encountered in precipitation and temperature within SGP 
affects nutrient management for various crops. Consequently, the first objective of this study was to assess the 
efficiency of three current algorithms developed by Oklahoma State University (OSU) to predict yield potential. 
Furthermore, the second objective was to create three new models for predicting potential yield using optical 
crop sensors and climatological data for maize under rainfed conditions.

Results
evaluation of current algorithms. All the three algorithms performed poorly when tested on combined 
data for both locations for the Regional trial (Fig. 1). There was a weak correlation among predicted and actual 
grain yield evident by the lower coefficient of determination  (R2 < 0.08).

At LCB algorithms 1 and 2 were unable to predict yields. The predicted yield with algorithm 1 and 2, at higher 
PREN, resulted in the prediction of yields up to 50 Mg ha−1. However, algorithm 3 performed slightly better 

Figure 1.  Correlation between actual yield and predicted yield using three current algorithms at different 
preplant N rates (PREN), Corn Regional trial, using combined data with algorithm 1 (A), using combined data 
with algorithm 2 (B), using combined data with algorithm 3 (C), using LCB data with algorithm 1 (D), using 
LCB data with algorithm 2 (E), using LCB data with algorithm 3 (F), using Efaw data with algorithm 1 (G), 
using Efaw data with algorithm 2 (H), using Efaw data with algorithm 3 (I).
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with an  R2 = 0.16. Similar to combined sites, all the algorithms were unable to predict actual grain yield at Efaw. 
Similar to the Regional trial, all three algorithms performed poorly at predicting final grain yield in Optimum 
N trial (Fig. 2). Lower  R2 were observed with all three algorithms for all the combined data. At LCB, algorithm 3 
was able to explain 16% of the actual yield, where algorithm 1 and 2 explained only 0.5%. None of the algorithms 
were able to explain more than 1.2% of actual grain yield at Efaw location.

new models. All three models built using Regional data are reported in Table 1. The first model was devel-
oped using all seven site years of Regional data and included 8 out of 66 explanatory variables included in this 
study. The Cp, AIC, BIC, and adjusted  R2, all selected eight variables as an optimal model. Based on their impor-
tance, the first variable included in the model was PREN, followed by NDVI, and GDD. The next variable added 
was the average monthly soil temperature at 250 mm under sod for July (S25AVG-7). The last four variables 
included were fractional water indices at 250 mm for April (FWI25-4), June (FWI25-6), July (FWI25-7), and 
September (FWI25-9). This model could explain 83% of the final grain yield (Table 1).

The second model trained using LCB Regional data included six variables as per Cp, AIC, BIC, and adjusted 
 R2 (Table 1). This model included PREN, NDVI, GDD, and FWI25-9, similar to the combined model. Further-
more, it included average precipitation for April (AprR) and average monthly soil temperature 100 mm under sod 
(SAVG-8). This was the best model of the three new models with the ability to explain 85% of final grain yield.

Figure 2.  Correlation between actual yield and predicted yield using three current algorithms at different 
preplant N rates (PREN), Optimum N rate trial, using combined data with algorithm 1 (A), using combined 
data with algorithm 2 (B), using combined data with algorithm 3 (C), using LCB data with algorithm 1 (D), 
using LCB data with algorithm 2 (E), using LCB data with algorithm 3 (F), using Efaw data with algorithm 1 
(G), using Efaw data with algorithm 2 (H), using Efaw data with algorithm 3 (I).

Table 1.  New regression models for predicting final grain yields. The acronyms are explained in Table 4.

Data Model Adjusted  R2

Combined
− 2.751386e + 02 + 9.087027e−03 × PREN + 3.165433e + 00 × NDVI − 3.346925e−03 × GDD + 8.5996
44e + 00 × S25AVG.7 + 3.228292e + 01 × FWI25.4 + 7.775841e + 00 × FWI25.6 + 1.190534e + 01 × FW
I25.7 + 6.451529e + 00 × FWI25.9

0.83

Lake Carl Blackwell − 6.408236013 + 0.006625366 × PREN + 3.271162048 × NDVI − 0.003379189 × GDD- 0.019196793 
× AprR + 0.331984242 × SAVG.8 + 9.377433891 × FWI25.9 0.85

Efaw − 94.63931672 + 0.01725896 × PREN − 1.14674051 × BAVG.8 + 4.74565389 × S25AVG.7 0.67
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The third model only included three variables and could only clarify 67% of the final yield and was built 
using Efaw Regional data (Table 1). The first variable included in this model was also PREN, followed by aver-
age monthly soil temperature 100 mm under bare soil for August (BAVG-8). The last variable included was 
S25AVG-7.

new model validation. The combined model performed better than current algorithms when tested on 
all site years of optimum N rate. The coefficient of determination  (R2) between actual yield and model predicted 
yield was 0.31 (Fig. 3); a figure higher than that of any existing algorithms. The LCB model was best at predict-
ing final grain yield with an  R2 = 0.52. The Efaw model was unable to predict final grain yield and only explained 
3.6% of the actual grain yield.

Discussion
The INSEY approach could result in overestimation of potential  yield23,31. This happened while testing the cur-
rent algorithm 1 and 2. The high PREN rates resulted in higher NDVI values. Incidentally, the projected biomass 
produced per day was large with relatively lower GDD. Extreme changes in growing condition from sensing to 
harvesting would lower the actual yield creating a vast difference in real and predicted  yields31. This could be 
avoided by supplementing INSEY with more risk aversion prediction  models31. Furthermore, locally developed 
algorithms do not perform outside the region for which they were  designed32. All three current OSU algorithms 
were built on data before 2010, and any inconsistency in newer data (environment, genetics, soil types, etc.) 
would affect their efficiency. Moreover, temporal restriction needs to be considered, necessitating consistent 
upgrading of these algorithms.

Figure 3.  Validation of new models at different preplant N rates (PREN) on Optimum N rate trial, using 
combined data with the combined model (A), using LCB data with LCB model (B), using Efaw data with Efaw 
model (C).
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In this study, we employed supervised learning category of ML involving 66 explanatory variables for yield 
prediction. After removing highly correlated variables, only 15 variables remained, and those were used to build 
new models. Puntel et al.28 developed new models using ML for the central-west region of Argentina. We devel-
oped predictive models for yield potential by combining optical sensors and climatological data. In agreement 
with Puntel et al.28, our models use fewer inputs than a simulation models.

Furthermore, our models are significant in comparison to the other current methodologies and account for 
spatial and temporal variability, appropriate for application in precision agriculture. In-season N assessment 
using optical sensor is a promising approach over other traditional  methods13,14,23,33,34. However, their precision 
depends on the accuracy of algorithms that convert crop reflectance to yield prediction and N  recommendation13. 
Analogous to this, we tried to develop regional algorithms to closely mimic factors such as current crop variety, 
rainfall, soils, timing, form, and placement of N, and interactions of these factors to determine potential yield 
and recommend N rates regionally as highlighted  by13.

Bushong et al.8 stressed proper validation of developed prediction models, to determine the accuracy of mod-
els to predict grain yield on an independent data set. They further highlighted the scarcity of work that validates 
yield prediction models. Numerous models explain the goodness of fit of the data used to develop the model 
without validation with an independent data  set15,17,21,23–25,31,35. Our new models were independently validated, 
and where two out of three models performed well with a prediction accuracy of 31% and 52%.

conclusion
In this work, an attempt to derive data-driven recommendations using NDVI and weather information currently 
collected by Mesonet weather stations was made. These regional models have the efficiency to explain final grain 
yield with 67%, 83%, and 85% accuracy, which is a crucial step for making N recommendations. When tested 
on an independent data set these models accurately predicted 31% and 52% final grain yield. However, in the 
future, it is essential to keep these models apprised with newer data.

Methods
Site description. The corn regional experiment (Regional) was set up in a randomized complete block 
design with 12 treatments replicated three times. This trial was initiated to update the algorithms used for yield 
prediction and subsequent N rate recommendation. A total of 7 site-years of data were included in this study. 
Data from Lake Carl Blackwell (LCB) from 2015 to 2018 were used. Three-years of data from 2016 to 2018 from 
Efaw Agronomy Research Station (Efaw) were also included. This experiment was further used to train/build 
three new models for yield prediction.

Similarly, a randomized complete block experimental design with three replications at all sites with fourteen 
treatments was used for the Optimum N rate experiment (Optimum N). This study was initiated to predict the 
optimum preplant N rates for the region. Similar to the Regional trial, a total of 7 site-years of data were included 
in this study. Data from four years at LCB and three at Efaw were analyzed. Both experiments were fertilized to 
a 100% level based on P and K test following regional fertilizer  recommendations36, to ensure N was the only 
limiting nutrient. This trial was further used to validate/test new models built using regional corn data. Soil 
descriptions for each site are reported in Table 2.

For all sites, only treatments with no N fertilizer or preplant N (PREN) fertilizer applications were included 
in this study. Treatments with mid-season N application were excluded. A total of six treatments from Regional, 
and seven treatments from Optimum N trial were included. The treatments and N rates included for each trial 
location are listed in Table 3.

field data collection. Throughout the growing season, NDVI data were collected using a hand-held Green-
seeker sensor from V4 to V8 growth stages. The GreenSeeker sensor measured NDVI by utilizing the Eq. (1):

Table 2.  Description of soil series at Efaw and Lake Carl Blackwell, OK.

Location Soil series

Efaw Ashport silty clay loam (fine-silty, mixed, superactive, thermic Fluventic Haplustolls)

Lake Carl Blackwell Port silt loam (fine-silty, mixed, thermic Cumulic Haplustolls)

Table 3.  Nitrogen fertilizer application rate used for model testing and training of this study.

Trial (replication) Location

N

Plot sizeSource Preplant Rate (kg N  ha−1)

Corn regional (3)
LCB UAN (28–0–0) 0, 45, 90, 134, 179, 224 3.0 m × 6.1 m

Efaw UAN (28–0–0) 0, 45, 90, 134, 179, 224 3.0 m × 6.1 m

Optimum N trial (3)
LCB UAN (28–0–0) 0, 17, 34, 67, 101, 134, 168 3.0 m × 6.1 m

Efaw UAN (28–0–0) 0, 17, 34, 67, 101, 134, 168 3.0 m × 6.1 m
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where near-infrared (NIR) was measured at 780 nm and red at 650 nm37. A self-propelled Massey Ferguson 8XP 
Combine (AGCO Corp., Duluth, GA, USA) equipped with harvest master (Juniper Systems Inc., Logan, UT, 
USA) automated weighing systems were used for harvesting the center two of four-row plots. The final yield was 
adjusted to 15.5% moisture content.

The weather data was taken from the Oklahoma Mesonet climate monitoring  station38. Sensor data was 
normalized to calculate a fractional water index (FWI), which is a unitless value ranging from 0.00 for dry soils 
to 1.00 for the wet/saturated  soils39. The list of all the other explanatory variables included in this study is listed 
in Table 4.

Data analysis. Evaluation of a current model for yield prediction. Three algorithms from (https ://www.nue.
oksta te.edu/Yield _Poten tial.htm) were evaluated to predict yield potential. All these algorithms were made using 
the methodology described by Raun et al.23. A linear regression analysis among predicted and actual yield was 
conducted to check the efficiency of these algorithms. This was done on both regional and optimum N rate data 
with the combined data and then for each location separately.

The following algorithms were used:

1. YP0 = 2,592 × (EXP(NDVI/Sum of GDD × 1775.6); RI Harvest = 1.64(RI-NDVI) − 0.5287
2. YP0 = 1,287 × (EXP(NDVI/Sum of GDD × 2,655); RI Harvest = 1.64(RI NDVI)  − 0.5287
3. YP0 = (CoefA × EXP (CoefB × NDVI)); RI Harvest = 1.64(RI-NDVI)  − 0.5287
 CoefA  =  641.4158203057011  +  4207.148880805758/(1.0  +  EXP(−  (x  −  897.0822110817790)/

(− 32.78891349907328)))
 CoefB = 1.46923333343772 + 1.8752166665474/(1 + EXP(− (x − 912.164821648278)/2.66689327528455))
 (x = cumulative GDD)

Training new models for yield prediction. New models for yield prediction were trained using data from the 
regional trial and climatological data obtained from the Oklahoma Mesonet climate monitoring station. A total 
of 66 explanatory variables were included for a multiple linear regression model comprised of preplant N rate, 
NDVI, Growing degree day heat units (GDD) along with weather variables listed in Table 4. The NDVI data 
were used for the growth stages from V4 to V8, and due to inconsistency in data collection, the new models were 
not separated for each growth stage. The climatological variables included encompassed the months of March 
to September.

Following steps were taken to generate the new models:

1. A Pearson correlation test was conducted for all the explanatory variables to remove highly correlated 
variables. The R statistical package “Hmisc” was used to calculate correlation coefficients and p-values. For 
plotting correlograms R package, “corrplot” was used.

2. Highly correlated variables were excluded from subsequent regression analysis; a reduced number of vari-
ables were used in the next step.

3. Best subset selection was used to identify a subset of variables. This reduced set was then fitted using least 
squares to predict yield. The single best model was then selected using cross-validation prediction error 
(Cp), Akaike information criterion (AIC), Bayesian information BIC, and adjusted  R2. All these approaches 
estimate test error by adjusting the training error to account for overfitting due to the  bias40. The branch and 
bound algorithm within “leaps” package of R statistical  software41 were used for best sub selection.

(1)NDVI =
ρNIR − ρRED

ρNIR + ρRED

Table 4.  Description of all the explanatory variables used in this study.

Acronym Explanation Unit

MarR, AprR, MayR, JunR, JulR, AugR, SepR Average monthly rainfall from March to September mm

TAVG-3,TAVG-4,TAVG-5,TAVG-6,TAVG-7,TAVG-8,TAVG-9 Average monthly air temperature from March to September Degrees celsius (C)

SAVG-3,SAVG-4,SAVG-5,SAVG-6,SAVG-7,SAVG-8,SAVG-9 Average monthly soil temperature 100 mm under sod from March to Septem-
ber C

BAVG-3,BAVG-4,BAVG-5,BAVG-6,BAVG-7,BAVG-8,BAVG-9 Average monthly soil temperature 100 mm under bare soil from March to 
September C

S5AVG-3,S5AVG-4,S5AVG-5,S5AVG-6,S5AVG-7,S5AVG-8,S5AVG-9 Average monthly soil temperature 50 mm under sod from March to Septem-
ber C

S25AVG-3,S25AVG-4,S25AVG-5,S25AVG-6,S25AVG-7,S25AVG-8,S25AVG-9 Average monthly soil temperature 250 mm under sod from March to Septem-
ber C

S60AV-3,S60AV-4,S60AV-5,S60AV-6,S60AV-7,S60AV-8,S60AV-9 Average monthly soil temperature 600 mm under sod from March to Septem-
ber C

FWI05-3,FWI05-4,FWI05-5,FWI05-6,FWI05-7,FWI05-8,FWI05-9 Monthly Fractional water index at 50 mm for each month from March to 
September Unitless

FWI25-3,FWI25-4,FWI25-5,FWI25-6,FWI25-7,FWI25-8,FWI25-9 Fractional water index at 250 mm for each month from March to September Unitless

https://www.nue.okstate.edu/Yield_Potential.htm
https://www.nue.okstate.edu/Yield_Potential.htm


7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11479  | https://doi.org/10.1038/s41598-020-68415-2

www.nature.com/scientificreports/

4. Three different linear regression models were developed. The first one using all of the data from regional 
termed as the combined model and the other two for each location, LCB, and Efaw, respectively.

Testing new model for yield prediction. The new models were tested on Optimum N trials. The three new mod-
els were tested by conducting a correlation between model predicted yields and actual yields. The combined 
model was tested on all of the data from Optimum N experiment. Only LCB data from Optimum N trial was 
used to validate the LCB model, and similarly, Efaw Optimum N data was used to check the Efaw model.

Received: 24 January 2020; Accepted: 24 June 2020
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